首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高体积分数SiC颗粒增强铝基复合材料的超声波钎焊   总被引:1,自引:0,他引:1  
研究了大气条件无钎剂作用下,SiC颗粒体积分数为55%的SiCp/A356 复合材料的超声波辅助钎焊的性能,在焊接过程中采用了Zn-Al钎料,研究结果表明,当超声波作用时间为0.5 s时,在钎料与复合材料界面处大部分位置氧化膜仍然连续.当超声波作用时间增加到5 s时,焊接接头区域的氧化膜完全消失,有一些铝枝晶从母材向Zn-Al合金中生长,使Zn-Al合金能够完全润湿复合材料基体合金,形成良好的冶金结合.并且随着超声振动时间的延长,液态Zn-Al合金能够逐渐润湿复合材料表面裸露的SiC增强相颗粒,接头的剪切强度由0.5 s的54.3 MPa增加到5 s的155.6 MPa,和母材的剪切强度接近(159.9~178.1 MPa).  相似文献   

2.
采用3种钎焊工艺焊接泡沫铝进行对比实验,焊接工艺包括:在高真空(真空度为10-3Pa)条件下采用复合层钎料进行钎焊;在低真空(真空度为1Pa)条件下采用复合层钎料进行钎焊;在高真空(真空度为10-3Pa)条件下采用单层钎料进行钎焊。对焊接接头的宏观、微观特性与抗弯强度进行分析比较。结果表明:在高真空条件下采用复合层钎料进行钎焊可获得满意的接头,接头强度明显高于母材;在低真空条件下采用复合层钎料进行钎焊所得到的接头强度明显低于母材;在高真空条件下采用单层钎料进行钎焊所得到的接头强度略低于母材。  相似文献   

3.
利用感应-超声复合钎焊工艺制备了Cu/Zn-2Al/Al管接头。研究了钎料管开口大小、超声波功率和超声波作用时间对接头显微组织和性能的影响。研究表明,钎料管开口大小为0~1 mm时可获得气密性及力学性能可靠的接头。超声波功率为240 W,振动时间2s时,可获得相对均匀、细小的钎缝组织。接头抗剪强度可达68.6 MPa,失效均发生在靠近接头的铝母材上。Cu/Zn-2Al/Al管通入压力4 MPa氮气30 s,接头未出现漏气情况。  相似文献   

4.
谷丰  孙凤莲  陈健  朱晅 《焊接》2007,(9):37-39
目前钎焊耐热合金类材料时,大多数企业采用进口BNi-2钎料,这不仅成本较高,有时由于供货不及时而延误工期。针对飞机发动机部件用材料GH1035的钎焊,分别使用国产BNi-2和进口BNi-2两种成分的钎料进行对比分析,以润湿性能和接头强度作为主要评定指标,结果表明:两种钎料在GH1035母材上的润湿铺展面积相近,润湿角均为零;接头剪切强度均可达290MPa,但国产钎料的焊缝硬度稍高。因此,在适当的钎焊工艺条件下,国产BNi-2钎料可以较好地代替进口BNi-2钎料。  相似文献   

5.
介绍了焊接参数对SiCp/2024Al铝基复合材料的真空钎焊组织和性能的影响.焊前利用颗粒暴露技术将复合材料表面颗粒部分暴露,并利用真空气相沉积使暴露表面合金化.使用M6钎料,在不同的钎焊工艺参数下对复合材料进行焊接.结果表明,焊接温度过低或者保温时间过短,钎缝结合面有残留的Cu,钎料对复合材料润湿不好.随钎焊温度增加,保温时间的进一步延长,Cu与Al基体完全反应,促进了钎焊过程.但随着钎焊温度和保温时间的进一步增加,母材中出现过烧导致的气孔.钎焊接头X射线衍射试验表明,接头中没有Al4C3脆性相生成.拉伸试验表明,钎焊参数为620℃,保温20min时,接头抗剪强度最高,达到202MPa.断口分析表明,钎料对复合材料的不润湿,复合材料过烧导致气孔,复合材料中颗粒的聚集是导致接头强度下降的主要原因.  相似文献   

6.
采用自行设计制备的Cu-Sn-Ti-Ni活性粉末钎料,在钎焊温度890~930℃,保温时间5~20 min的条件下,对Al2O3陶瓷与Cr12钢进行真空钎焊试验,利用扫描电镜和能谱分析对钎焊界面的微观组织进行了分析。结果表明:钎料与两侧母材润湿良好并形成良好的冶金界面结合;钎焊过程中,钢母材中的Fe元素向钎料层中扩散,钎料中的Ti元素向母材两侧扩散并聚集,在钎料层钢母材侧生成Ti Fe2和Ti C化合物。对接头抗剪强度的分析结果表明,在钎焊温度890℃、保温时间10 min的条件下,接头的抗剪强度最高,达118 MPa。  相似文献   

7.
采用Ag-Cu钎料与Ti-Zr-Ni-Cu钎料,对TiAl与Ti合金进行了真空钎焊试验,主要研究了采用两种钎料时的界面反应以及钎焊温度对界面组织及性能的影响.研究发现,采用Ag-Cu钎料时界面结构为:Ti/Ti(Cu,Al)2/TiCux Ag(s,s)/Ag(s,s)/Ti(Cu,Al)2/TiAl,当钎焊温度T=1 223 K,保温时间t=10 min时接头的剪切强度达到223.3 MPa;采用Ti-Zr-Ni-Cu钎料时在界面出现了Ti2Ni,Ti(Cu,Al)2等多种金属间化合物,当钎焊温度T=1 123 K,保温时间t=10 min时接头的剪切强度达到139.97 MPa.  相似文献   

8.
采用Ti37.5-Ni37.5-V25钎料作为中间层对TiAl基合金(Ti-42.5Al-9V-0.3Y)进-真空钎焊,研究在不同钎焊温度下接头组织性能的变化情况;结果表明,真空钎焊后接头的厚度由原来钎料的200μm增加到400 μm,说明接头发生强烈的化学反应,同时随着钎焊温度的增加,接头的界面形态和剪切强度有很大的变化,钎焊温度低于1 220℃时,界面反应不完全,焊缝中心残留未完全融化的钎料,温度高于1 220℃时,界面反应完全,焊接接头由钎缝中心区、致密网状区和不连续析出区三个区域组成;在1 220℃、10 min条件下得到良好的接头,剪切强度达到196 MPa.  相似文献   

9.
采用SnAgCu钎料对Al-60Si合金进行了超声波辅助低温钎焊,发现Ag元素可以与Al元素结合形成一层Ag2Al,促进钎料对母材的润湿和溶解.研究了钎焊温度及超声波作用时间对接头力学性能与微观组织的影响.结果表明,随着钎焊温度的升高,钎缝中的硅颗粒平均质量分数随之增加,由焊接温度240℃时的1.11%提高至钎焊温度3...  相似文献   

10.
铝合金/镀锌钢TIG熔钎焊接头界面组织及力学性能   总被引:1,自引:0,他引:1  
采用TIG熔钎焊进行了铝基钎料在镀锌钢板上的润湿铺展试验及铝合金与镀锌钢板的搭接试验,分析了钎料在钢表面的润湿铺展性,研究了接头界面组织,并测试了接头力学性能.研究结果表明,在1rIG电弧热源作用下铝基钎料在镀锌钢板上润湿铺展良好,钢板未熔化,润湿角<20°;获得了较好的铝合金与镀锌钢搭接接头,钢母材侧为钎焊连接,金属间化合物层厚度<9.0 um,从焊缝侧到钢侧金属间化合物经历了FeAl3-Fe2Al5+FeAl2→FeAl2+FeAl的转变,铝母材侧为熔焊连接,焊缝晶粒尺寸明显增大;搭接接头存在局部"未钎合"缺陷,成为裂纹根源,导致接头断裂在焊根附近的焊缝上,抗拉强度仅有90 MPa.  相似文献   

11.
采用四号锰基钎料真空钎焊2Cr13不锈钢,研究了钎焊温度对其接头组织和室温及高温剪切强度的影响,并与Ni-Cr-P钎料钎焊不锈钢接头进行了对比.结果表明:四号锰基钎料钎焊接头组织由Mn-Ni基的单相Mn-Ni-Cu-Fe-Cr-Co固溶体组成,接头室温剪切强度随着钎焊温度的升高逐渐增加;Ni-Cr-P钎料钎焊接头组织由Ni-Fe基固溶体和Ni(Cr,Fe)-P化合物组成,接头室温剪切强度低于四号锰基钎料钎焊接头的室温剪切强度.当测试温度超过500℃时,Ni-Cr-P钎料钎焊接头的高温剪切强度降低幅度不大,四号锰基钎料钎焊接头降低明显,但仍高于Ni-Cr-P钎料钎焊接头的高温剪切强度.  相似文献   

12.
采用Ag-Cu-Ti钎料对Al_2O_3弥散强化铜与CuCrZr合金进行真空钎焊,研究了钎焊温度和保温时间对钎焊接头组织和性能的影响,分析了经真空钎焊后直接淬火+时效处理对母材CuCrZr合金及接头性能的影响.结果表明,钎焊温度过低或保温时间过短,钎料与母材相互冶金作用较弱,接头性能较差;钎焊温度过高或保温时间过长,钎料向弥散铜中毛细渗入严重,焊缝中出现孔洞,接头强度也下降.经过随后的时效处理可以部分恢复母材CuCrZr合金的性能.  相似文献   

13.
研究了增强相体积分数为55%的Si Cp/Al-MMCs与可伐合金的真空钎焊,分析了钎焊温度和复合材料表面镀层对接头性能的影响规律。结果表明,Al-12.0Si-1.5Mg-4.0Ti钎料在真空条件下能很好地润湿55%Si Cp/Al-MMCs和可伐合金,合适的钎焊工艺参数为:复合材料表面镀铜、真空度6.5×10-3Pa、钎焊温度590℃、保温时间30 min,接头最大剪切强度可达64.9 MPa。当钎焊温度从570℃增加到590℃时,接头的剪切强度和显微硬度都逐渐增加。复合材料表面镀铜会显著增加钎缝以及界面区域的显微硬度。复合材料表面镀层会对接头剪切强度产生影响,在590℃以下钎焊时,无镀层的复合材料和可伐合金接头的剪切强度较高。而当钎焊温度达到590℃时,表面镀铜的复合材料与可伐合金接头的剪切强度最高。  相似文献   

14.
Cu—Ni—Be合金与T2铜真空钎焊及热处理一体化工艺研究   总被引:1,自引:1,他引:0  
通过SEM、EDS、金相显微镜及拉伸试验分析了不同钎焊温度下钎焊接头的显微组织及性能特征,研究了保温时间对经真空钎焊、淬火复合工艺及时效处理后母材Cu-Ni-Be合金和接头组织及性能的影响.结果表明,钎焊温度对母材与钎料间的冶金作用影响明显,钎焊温度为935℃时,钎焊接头抗拉强度最高达228MPa;除10 min外,随着保温时间的延长,接头及母材性能变化不明显,热处理后接头性能较退火态有所下降;采用CuMnNi钎料进行Cu-Ni-Be合金与T2铜真空钎焊及热处理一体化工艺能够恢复母材性能的92%,接头强度达144MPa.  相似文献   

15.
以泡沫Cu作为应力缓冲中间层,采用Ag-Cu-Ti合金作为钎料,采用不同的温度真空钎焊C/C复合材料和TC17钛合金。通过剪切试验测试不同钎焊温度下接头的力学性能,并采用SEM、EDS和XRD分析钎焊接头的微观组织。研究表明:当钎焊温度为860℃时,钎焊接头获得最大的剪切强度24 MPa。钎焊后,中间层与母材连接紧密,无界面缺陷。在TC17钛合金侧,Ti元素和Cu元素发生界面反应,依次形成CuTi_2、CuTi的反应层;在中间层,Cu和Ti相互结合形成Cu4Ti_3金属化合物,还有Ag(s,s)和Cu(s,s)相;在C/C复合材料一侧,Ti和C发生界面反应形成Ti C化合物,改善了钎料对C/C复合材料表面的润湿性能,增强了钎焊接头的连接效果。  相似文献   

16.
分别采用Zn-15Al,Zn-22Al,Zn-28Al,Zn-37Al和Zn-45Al钎料钎焊获得Cu/Al接头.利用SEM,EDS和XRD研究了Zn-Al钎料成分对Cu/Al接头中Cu母材/钎缝界面结构的影响,并系统阐述了Zn-Al钎料成分-接头界面结构-接头抗剪切强度之间的关系.研究发现,Cu/Zn-15Al/Al接头中Cu母材/钎缝界面结构为Cu/Al4.2Cu3.2Zn0.7,且Al4.2Cu3.2Zn0.7界面层较薄,其厚度为2~3μm,接头具有较高的抗剪切强度,达66.3 MPa.随着钎料中Al含量的提高,在Cu/Zn-22Al/Al接头界面处Al4.2Cu3.2Zn0.7界面层的厚度逐渐增大,甚至在Cu/Zn-28Al/Al接头的Al4.2Cu3.2Zn0.7界面层附近出现少量的Cu Al2,接头的抗剪切强度逐渐降低.当采用Al含量较高的Zn-37Al钎料钎焊Cu/Al接头时,Cu母材/钎缝界面结构转变为Cu/Al4.2Cu3.2Zn0.7/Cu Al2;脆性Cu Al2层的出现,使接头抗剪切强度大幅下降,为34.5 MPa.当采用Al含量最高的Zn-45Al钎料钎焊Cu/Al接头时,Cu母材/钎缝界面结构转变为Cu/Cu Al2,接头抗剪切强度最低,为31.6 MPa.  相似文献   

17.
采用自制的Ni泡沫/Sn复合钎料片通过超声波钎焊工艺,低温快速制备了Al/Ni泡沫-Sn/Al接头。研究了超声波钎焊时间对铝合金接头显微组织和力学性能的影响。结果表明,在超声波引起的空化效应和机械摩擦效应联合作用下,促进了润湿铺展和冶金结合;随着钎焊时间的延长,Ni骨架逐渐呈层叠条带状分布,并在其周围生成Ni_3Sn_4层,界面处Al_3Ni相增多并取代Sn/Al界面;接头的抗剪强度先提高后降低,在4 s时达到最高值,约52.34 MPa。  相似文献   

18.
选用CuMnNi钎料对刀具的刀头YG8硬质合金和刀体45钢进行真空钎,通过剪切强度试验、扫描电镜和能谱仪等方法分析了钎焊温度、钎焊间隙和Cu缓冲层对钎焊接头性能和组织的影响。结果表明:钎焊温度在1000℃、钎焊间隙在0.18 mm时,钎焊接头的组织和强度较好,接头剪切强度达280 MPa;添加0.1 mm Cu缓冲层后,缓冲层与钎料和母材结合界面良好,接头剪切强度最高。  相似文献   

19.
采用BAg72Cu共晶钎料对奥氏体不锈钢与纯铜的真空钎焊工艺进行研究.通过剪切试验、光学显微镜观察、扫描电镜及能谱分析等手段研究了钎焊温度和保温时间对钎焊接头组织和性能的影响.试验表明,钎缝中心区为AgCu共晶组织,两侧界面反应区为铜基固溶体,钎焊温度对钎焊接头的组织和性能影响明显,而保温时间对其影响不明显.当钎焊温度865℃、保温时间10min时,剪切强度最高,达到160 MPa.钎焊温度过低时,冶金作用较弱,接头强度较低;钎焊温度过高时,钎料流淌较多,接头强度也较低.以865℃为钎焊温度,改变保温时间,在10~45 min保温时间内接头的剪切强度变化不大.  相似文献   

20.
研究了LF6铝合金散热器模拟件非真空条件下的振动钎焊,重点考查了振动作用对钎料润湿性的影响和钎缝结合界面的微观组织特征。结果表明,采用2s的超声波振动可有效去除钎料/母材界面的氧化膜,实现二者良好的润湿结合。盖板涂覆钎料时钎料中残留的缩孔、氧化膜夹杂是引起钎缝缺陷的主要原因。振动钎焊可成功实现翅片与盖板的组合焊接,钎缝成形良好,为铝合金板式散热器的焊接提供了一条新途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号