首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
采用VOF(Volume of Fluid)自由表面捕捉方法对盐水液滴蒸发过程中气液界面进行追踪,建立了降压环境下单个盐水液滴的蒸发模型,并通过盐水液滴蒸发的实验数据验证了此模型。通过对盐水液滴在相变过程中的形态变化以及传热传质特性的分析,研究了液滴内部温度、速度、蒸汽分布以及液滴形态等随时间的变化情况,分析了影响盐水液滴降压蒸发过程的主要因素。结果表明:在降压蒸发过程中液滴形态变化和环境中蒸汽的分布会随速度场的变化而变化;蒸发过程中初始盐组分质量浓度越大的液滴蒸发速率越缓慢,最终能达到的液滴最低中心温度越高,且液滴中心温度回升速度越慢、回升时间也越晚;液滴初始温度对蒸发速率影响较大,初始温度越高,表面蒸发速率越快,液滴中心温度回升速度越快。  相似文献   

2.
利用开发的计算模型对壬烷液滴在氮气中的蒸发过程进行了数值计算,研究了超临界环境条件下环境压力、环境温度以及液滴初始温度对液滴蒸发特性的影响.结果表明:环境压力越高,在蒸发过程中液滴表面温度的升温速度越快;并在蒸发初期液滴直径的增大越显著,同时液滴表面发生迁移的时刻越早.环境温度越高液滴的蒸发寿命越短,液滴表面发生迁移的时刻越早,并且在蒸发初期液滴直径的增大越不明显.随着液滴初始温度的升高液滴的蒸发寿命和迁移时刻几乎均呈线性趋势逐渐减小,液滴初始温度的高低只会使液滴的蒸发过程整体上提前或延后.  相似文献   

3.
不同来流温度下单液滴燃烧的数值模拟   总被引:1,自引:0,他引:1  
单液滴蒸发燃烧规律是研究喷雾蒸发与燃烧这一复杂物理化学过程的基础.与传统折算薄膜理论相比,从基本控制方程出发,建立了高温对流环境中单液滴的瞬态蒸发与燃烧模型.模型中详细考虑了液相内部环流、气相边界层流动以及热物性的变化,并采用数值模拟方法分析了来流温度对油滴蒸发燃烧特性的影响.计算结果复现了实验中液滴火焰由尾部火焰向包覆火焰的发展过程,验证了直径平方定律的适用范围,并得到了来流温度对油滴蒸发燃烧特性的影响规律.  相似文献   

4.
建立两组分液滴蒸发理论模型,利用Matlab 6.5编程,模拟计算高温气流中液滴的蒸发过程,得出液滴的蒸发规律,而且计算结果与试验结果吻合很好.模拟结果和试验结果表明:在蒸发过程中,两组分液滴蒸发不满足D2定律,乙醇组分比水组分蒸发快,随着乙醇浓度降低,蒸发速率不断下降.乙醇浓度越大,液滴蒸发越快.气流温度越高、气流速度越大,液滴蒸发时间越短,液滴蒸发速度越快.  相似文献   

5.
采用分子动力学方法对纳米尺度下氩液滴在氩蒸气中蒸发过程进行了模拟,其中液相分子采用球形截断的Lennard-Jones势能函数描述。模拟过程首先在三维模拟空间产生准稳态平衡的液滴和周围气相环境,随后控制液滴的外界物理条件形成蒸发现象,同步记录气液两相分子坐标和动量变化,从微观信息中统计计算出相应的宏观物理信息。研究了蒸发初始液滴半径的不同研究其对液滴蒸发过程的影响,结果表明纳米尺度下液滴蒸发现象与微米以上尺度液滴蒸发现象存在差异;引入等效辐射能的概念在分子动力学方法中实现了对辐射能传递过程的模拟,证实了辐射传递能量会对纳米尺度液滴蒸发过程产生很大的影响。  相似文献   

6.
固着液滴是指附着于壁面上的液滴,其蒸发行为及传热传质特性是喷雾冷却、喷墨打印等相变传热传质领域的基础问题之一。文中重点针对固着液滴蒸发过程所涉及的自身形态演变规律、气液固三相耦合传热/传质/流动特性进行了综述。结合毫微尺度固着液滴基本蒸发模式、热质传递形式、气液两相流动特征和界面输运行为,分析了液滴性质、壁面条件、气相环境条件等关键因素对固着液滴蒸发过程的内在作用机制和影响规律,提出了微纳尺度固着液滴(群)热质传递过程与机理的相关研究展望。  相似文献   

7.
采用标准微电子机械系统(Micro-Electro-Mechanical System,MEMS)加工工艺,设计并加工了一种具有圆柱微结构的超疏水润湿梯度表面,搭建了研究液滴蒸发过程的可视化光学实验平台,同时从不同角度观察了液滴在具有圆柱状微结构超疏水润湿梯度表面的蒸发行为。通过实验研究发现:液滴在具有圆柱状微结构的超疏水润湿梯度表面的蒸发过程中,随着液滴的蒸发,液滴体积、液滴与表面的接触半径均不断减小,蒸发过程遵循混合蒸发模型;液滴边缘的三相线跳跃与移动均只发生在相对疏水的区域一侧;而在相对亲水的一侧,液滴边缘始终处于静止状态,直至液滴完全蒸发;在超疏水润湿梯度表面上的液滴蒸发过程中,液滴质心仅在具有润湿梯度的方向上移动,且液滴质心移动方向与润湿梯度方向相反(朝亲水侧移动)。最后基于液滴蒸发过程中的能量变化理论,解释了出现上述现象的原因。  相似文献   

8.
引入相平衡理论建立了DME-LPG-N2三元气、液高压相平衡,获得了液滴表面各组分的物质的量分数.建立了混合液滴超临界蒸发的计算模型,计算了二甲醚(DME)/液化石油气(LPG)双燃料液滴的蒸发过程,考察了液滴的初始直径、初始组分、环境温度和环境压力对蒸发过程的影响.结果表明:环境压力、温度越大,环境介质(N2)在液滴中的溶解越明显;液滴初始直径越小,蒸发寿命越短;液滴中DME越多,亚临界蒸发过程中的液滴蒸发寿命越长,而超临界蒸发过程中液滴蒸发寿命越短;环境温度越高,液滴蒸发寿命越短;在研究的温度范围内,环境压力越高,在亚临界条件下液滴蒸发寿命越短,而在超临界条件下液滴蒸发寿命越长.  相似文献   

9.
半干法烟气脱硫优势明显,喷雾干燥效率直接影响其运行成本.目前的商用CPFD软件仅有纯水蒸发模型,未考虑溶质浓度对蒸发速度的影响.基于Barracude软件的反应模型,在考虑溶质材质、溶质浓度、颗粒相关系等影响因素的基础上,开发了新的蒸发模型,与查尔斯·沃斯的单液滴蒸发实验的结果对比,验证了该模型的准确性.  相似文献   

10.
基于考虑内部温度梯度与热膨胀的非等温液滴蒸发模型,通过数值模拟,研究了对流热环境中柴油液滴蒸发的热膨胀与环境压力影响.在考虑液滴与气流热物性随温度、压力及组分瞬态变化的条件下,计算获得了不同热环境中的蒸发液滴半径变化曲线,比较了考虑热膨胀与否对液滴蒸发预测结果的影响.研究表明,柴油液滴对流蒸发中存在明显的热膨胀,可使液滴寿命缩短10%以上;环境压力效应具有非单调性,在一定热环境条件下发生逆转.  相似文献   

11.
Dropwise cooling is a subject of interest for numerous industrial applications, which fosters fundamental research on the related mechanisms. The present work is focused on studying the cooling effect of 2 water droplets gently released onto a heated solid surface. The nominal initial temperature of the substrate was lower than 100 °C, thereby referring to evaporation regime. Heat-transfer phenomena were analyzed by an experimental and numerical approach at the solid/liquid interface and over non-wetted regions, thus evaluating mutual interaction between droplets. Infrared thermography was employed in a facility built to measure surface temperature from below through a fully non-intrusive approach. An infrared-transparent disk served as the substrate; its black-painted upper surface allowed heating and droplet deposition to occur on a blackbody. A numerical code was developed to model heat transfer within all bodies and at all interfaces by the finite-volume discretization method. Numerical results showed very good agreement with experimental temperature profiles and heat-flux distribution was predicted over the whole sampling region. Cooling effect was determined quantitatively together with the extent of the mutual-interaction region, where the influence of 2 sequentially-released droplets was proved higher and longer than that of a single-droplet configuration with the same amount of deposited water.  相似文献   

12.
A numerical simulation of evaporation in a monodisperse droplet stream is proposed, taking into account the transient state of the evaporation, and the non-uniform mass and heat transfer coefficients on the droplet surface. These investigations emphasize the strong interaction effects between closely spaced droplets in a dense spray, reducing significantly the transfer coefficients. Moreover, the Marangoni force becomes more significant than the viscous force, driving the internal motion of the droplet and affecting the temperature fields. Otherwise, a better understanding of the evaporation phenomenon around closely spaced droplets will help to refine the existing models used in dense sprays.  相似文献   

13.
The study presents the mathematical model of unsteady heat transfer in evaporating semitransparent droplets of non-isothermal initial state and the numerical research method, evaluating selective radiation absorption and its influence on the interaction of transfer processes. The relation of the transfer processes inside droplets and in their surroundings and the necessity of thorough research of these processes are substantiated. When modeling the combined energy transfer in water droplets, the evaluation of thermoconvective stability in evaporating semitransparent liquid droplets is presented; the influence of the droplet initial state on its heating and evaporation process is investigated. The influence of heat transfer peculiarities on the change of the evaporating droplet state is indicated. Main parameters, which decide the peculiarities of the interaction of unsteady transfer processes in droplets and their surroundings, are discussed. The results of the numerical research are compared to the known results of the experimental studies of water droplet temperature and evaporation rate.  相似文献   

14.
During the investigation on atomization and evaporation of water in steam spray coolers a thermal measuring device has been developed for droplet size measurement. This device consists of a thermocouple on which the droplet evaporates by heat removal from the thermocouple material near the hot junction; it is called: droplet detecting thermocouple (d.d.t.). The principle of a d.d.t. is based on utilization of the correlation between droplet radius and temperature signal of the d.d.t., caused by the evaporating droplet. The d.d.t. proved to be a dependable device for continuous detecting and measurement of water droplets both in air and steam flows, even at high pressures and temperatures. In this paper a theoretical analysis of the d.d.t. behaviour is given together with experimental data of d.d.ts. for water droplets with radii between 3 and 1188 μm. Good agreement between experimental data and theoretically predicted results has been reached.  相似文献   

15.
Results of experimental studies and the modelling of heating and evaporation of monodisperse ethanol and acetone droplets in two regimes are presented. Firstly, pure heating and evaporation of droplets in a flow of air of prescribed temperature are considered. Secondly, droplet heating and evaporation in a flame produced by previously injected combusting droplets are studied. The phase Doppler anemometry technique is used for droplet velocity and size measurements. Two-colour laser induced fluorescence thermometry is used to estimate droplet temperatures. The experiments have been performed for various distances between droplets and various initial droplet radii and velocities. The experimental data have been compared with the results of modelling, based on given gas temperatures, measured by coherent anti-stokes Raman spectroscopy, and Nusselt and Sherwood numbers calculated using measured values of droplet relative velocities. When estimating the latter numbers the finite distance between droplets was taken into account. The model is based on the assumption that droplets are spherically symmetrical, but takes into account the radial distribution of temperature inside droplets. It is pointed out that for relatively small droplets (initial radii about 65 μm) the experimentally measured droplet temperatures are close to the predicted average droplet temperatures, while for larger droplets (initial radii about 120 μm) the experimentally measured droplet temperatures are close to the temperatures predicted at the centre of the droplets.  相似文献   

16.
The coupling model of flow and heat and mass transfer for gas-spray droplet two-phase flow has been developed to simulate the evaporating spray in cross-flow. The correlations used for describing the droplet evaporation and motion in convective flow have been compared. The comparisons of calculated results show that the different correlations for determining Nusselt number and Sherwood number impose a significant influence on the lifetime of droplet. The modification of Nusselt number and Sherwood number with regard to the heat and mass boundary around the droplet is of great importance, while different mixing laws for mixture properties and different drag coefficient equations only demonstrate a slight effect on the evaporation characteristics of droplet. The characteristics of spray droplets and cross-flow in terms of both evaporation and motion are obtained. The secondary flow phenomenon is observed in the simulation results and contributes to achieving a more even distribution of temperature and an improved mixing effect of the vapor and cross-flow.  相似文献   

17.
An experimental study of the structure of an acoustically forced, reacting two-phase jet was performed. The jet was acoustically forced to control the formation and evolution of large-scale structures in the near field of the jet. Phase-locked data acquisition techniques were used to correlate droplet statistics and dynamics with features of the large-scale structures. Phase Doppler interferometry was used to acquire droplet statistics. Planar imaging techniques were applied to document the distribution of droplets within the jet. The results show that the interaction between droplets and large-scale structures leads to a nonuniform distribution of droplets in the reacting jet. The combination of transport effects and droplet evaporation leads to the formation of droplet clusters. The group combustion behavior of the droplet field was evaluated by estimating the group combustion number from experimental data. External sheath burning is present in the early portion of the flame followed by a transition to external group combustion as clusters begin to be the dominant feature. Late in the cluster lifetime there is a shift to internal group combustion.  相似文献   

18.
Droplet evaporation widely exists in the daily life and industrial production. In most of previous experimental studies, the evaporation of sessile droplets was conducted under a constant substrate temperature condition. However, drops often evaporating on a heating surface under a constant heat flux condition in many practical applications. In this paper, we have carried out an experiment on sessile 3 μl DI water droplets evaporated on hydrophilic and hydrophobic heating surfaces under constant heat flux in the range from 1153 W/m2 to 6919 W/m2. A high-speed camera was used to record the changing shapes of two sessile droplets on a hydrophilic and a hydrophobic heating surface placed side by side. The droplet height, dynamic contact angle, droplet contact diameter, evaporation mode and evaporation rate are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号