首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Microparticles containing heparin were prepared by a water-in-oil-in-water emulsification and evaporation process with pure or blends of biodegradable (poly-?-caprolactone and poly(d,l-lactic-co-glycolic acid)) and of positively-charged non-biodegradable (Eudragit® RS and RL) polymers. The influence of polymers and some excipients (gelatin A and B, NaCl) on the particle size, the morphology, the heparin encapsulation rate as well as the in vitro drug release was investigated. The diameter of the microparticles prepared with the various polymers ranged from 80 to 130 µm and was found to increase significantly with the addition of gelatin A into the internal aqueous phase. Microparticles prepared with Eudragit RS and RL exhibited higher drug entrapment efficiency (49 and 80% respectively), but lower drug release within 24 h (17 and 3.5% respectively) than those prepared with PCL and PLAGA. The use of blends of two polymers in the organic phase was found to modify the drug entrapment as well as the heparin release kinetics compared with microparticles prepared with a single polymer. In addition, microparticles prepared with gelatin A showed higher entrapment efficiency, but a significant initial burst effect was observed during the heparin release. The in vitro biological activity of heparin released from the formulations affording a suitable drug release has been tested by measuring the anti-Xa activity by a colorimetric assay with a chromogenic substrate. The results confirmed that heparin remained unaltered after the entrapment process.  相似文献   

2.
ABSTRACT

The aim of the present work was to investigate the preparation of low molecular weight heparin (LMWH) nanoparticles (NP) as potential oral heparin carriers. The NP were formulated using an ultrasound probe by water-in-oil-in-water (w/o/w) emulsification and solvent evaporation with two biodegradable polymers [poly-ε-caprolactone, PCL and poly(d,l-lactic-co-glycolic acid) 50/50, PLGA] and two non-biodegradable positively charged polymers (Eudragit RS and RL) used alone or in combination. The mean diameter of LMWH-loaded NP ranged from 240 to 490 nm and was dependent on the reduced viscosity of the polymeric organic solution. The surface potential of LMWH NP prepared with Eudragit polymers used alone or blended with PCL and PLGA was changed dramatically from strong positive values obtained with unloaded NP to negative values. The highest encapsulation efficiencies were observed when Eudragit polymers took part in the composition of the polymeric matrix, compared with PCL and PLGA NP exhibiting low LMWH entrapment. The in vitro LMWH release in phosphate buffer from all formulations ranged from 10 to 25% and was more important (two- to threefold) when esterase was added into the dissolution medium. The in vitro biological activity of released LMWH, determined by the anti-factor Xa activity with a chromogenic substrate, was preserved after the encapsulation process, making these NP good candidates for oral administration.  相似文献   

3.
The objective of this study was to develop doxofylline-loaded sustained-release pellets coated with Eudragit® NE30D alone (F1) or blend of Eudragit® RL30D/RS30D (F2) and further evaluate their in vitro release and in vivo absorption in beagle dogs. Doxofylline-loaded cores with a drug loading of 70% (w/w) were prepared by layering drug-MCC powder onto seed cores in a centrifugal granulator and then coating them with different kinds of polymethacrylates in a bottom-spray fluidized bed coater. Dissolution behaviour of these formulations was studied in vitro under various pH conditions (from pH 1.2 to pH 7.4) to evaluate the effect of pH on drug release profiles. It was found that F2 produced a better release profile than F1 did and two different release mechanisms were assumed for F1 and F2, respectively. The relative bioavailability of the sustained-release pellets was studied in six beagle dogs after oral administration in a fast state using a commercially available immediate release tablet as a reference. Coated with Eudragit® NE30D and a blend of Eudragit® RL30D/RS30D (1:12), at 5% and 8% coating level, respectively, the pellets acquired perfect sustained-release properties and good relative bioavailability, with small fluctuation of drug concentration in plasma. But combined use of mixed Eudragit® RL30D/RS30D polymers with proper features as coating materials produced a longer Tmax, a lower Cmax and a little higher bioavailability compared to F1 (coated with Eudragit® NE30D alone). The Cmax, Tmax and relative bioavailability of F1 and F2 coated pellets were 15.16 μg/ml, 4.17 h, 97.69% and 11.41 μg/ml, 5 h, 101.59%, respectively. Also a good linear correlation between in vivo absorption and in vitro release was established for F1 and F2, so from the dissolution test, formulations in vivo absorption can be properly predicted.  相似文献   

4.
Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. A sustained-release (SR) tablet prepared by direct compression of wet-extruded and spheronized core pellets with HPMC excipients and exhibited a zero-order sustained release (SR) profile. The 23 full factorial design was utilized to search an optimal SR tablet formulation. This optimal formulation was followed zero-order mechanism and had specific release rate at different time intervals (released % of 1, 6, and 12 hr were 15.84, 58.56, and 93.10%). The results of moisture absorption by Karl Fischer meter showed the optimum SR tablet could improve the hygroscopic defect of the pure drug (PB). In the in vivo study, the results of the bioavailability data showed the Tmax was prolonged (from 0.65 ± 0.082 hr to 4.83 ± 1.60 hr) and AUC0–t (from 734.88 ± 230.68 ng/ml.hr to 1153.34 ± 488.08 ng/ml.hr) and was increased respectively for optimum PB-SR tablets when compared with commercial immediate release (IR) tablets. Furthermore, the percentages of in vitro dissolution and in vivo absorption in the rabbits have good correlation. We believe that PB-SR tablets designed in our study would improve defects of PB, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in war or terrorist attacks in the future.  相似文献   

5.
The objective of this study was to develop tanshinol sustained-release pellets (TS–SRPs) for the treatment of angina. Considering the poor intestinal absorption of TS, sodium caprate (SC) was used as an absorption enhancer for bioavailability improvement. Single-pass intestinal perfusion in rats demonstrated that the permeability of TS was remarkably enhanced, when the weight ratio of TS to SC was 1:3. Then, the cores were prepared with TS, SC and MCC at a weight ratio of 1:3:16 via extrusion–spheronization, followed by coating with Eudragit® RS30D/RL30D dispersion (9:1, w/w). In vitro release studies revealed that release methods and rotation rates had no significant effects on the drug release of optimized TS–SC–SRPs except for the dissolution media. The release behavior was characterized as non-Fick diffusion mechanism. The pellets possessed a dispersion-layered spherical structure and were stable during three months of storage at 40?°C/75% RH. Compared with TS immediate-release pellets, the AUC0–24 in healthy rabbits was increased by 1.97-fold with prolonged MRT (p?相似文献   

6.
Abstract

A convenient and reliable method to prepare procaterol HCl oral dosage form at an extremely low dosage (25 µg/cap) is presented in this paper. Procaterol HCl was mixed with the film-forming agent hydroxypropyl methylcellulose in an aqueous solution, which was then spray-coated on sugar spheres (Nu-pareil PG 20/25) to produce procaterol HCl pellets. The IR spectra of coated and noncoated pellets indicated that procaterol HCl was coated on the sugar spheres successfully with a weight increment less than 1%. Most of the coated pellets were able to pass through an 18-mesh screen with no agglomeration. The average weights of coated pellets filled inside of capsules were monitored during the filling process. A simple liquid chromatographic method was developed and validated for the assay and uniformity test of procaterol HCl in different dosage forms. The results of assay and content uniformity test for both in-house product and a commercial product, i.e., Meptin®-mini tablet, were satisfied. The data of f2 function and ANOVA analysis for the dissolution profiles of both procaterol HCl products suggested that they are pharmaceutical equivalent.

In an in vivo study (n = 24), a single dose of 75 µg procaterol HCl was administrated to each volunteer and the plasma concentration of procaterol was determined by a LC/MS/MS method, developed by the same authors. There were no significant differences (p > 0.05) in the data of AUC0→16h, AUC0→∞, Cmax, and MRT for both preparations. It is confirmed that the pellets capsule produced in this study is bioequivalent with Meptin®-mini tablet.  相似文献   

7.
Background: Dual pulse multiparticulate systems may provide relief from circadian disorder rheumatoid arthritis. Aim: The aim of this study was to develop a pH-responsive dual pulse multiparticulate dosage form containing a model drug ketoprofen, a nonsteroidal anti-inflammatory drug used for rheumatoid arthritis. Method: The pellets were prepared by using extrusion–spheronization method and the core pellets were coated with a pH-sensitive poly(methyl) acrylate copolymer (Eudragit® L100-55, Eudragit® S100) to achieve site-specific drug release with a lag time. The formulated pellets were characterized for shape and size uniformity, friability, surface morphology studies, coating uniformity, and drug–excipient compatibility studies. In vitro dissolution test was used for comparison of drug release profiles of various coated pellets. Results: The particle size of core and polymer-coated pellets was found to be in the range of 0.95–1.3 and 1.42–1.61 mm, respectively. The pellets were spherical in shape with smooth texture and uniformity in size. The dual pulse was aimed at release after a lag time of 2 and 5 hours. In vitro dissolution tests were carried out for the first and second dose pellets in a USP type II dissolution apparatus in media-simulating pH conditions of the gastrointestinal tract. The first dose release of the ketoprofen from the formulated pellets was established in pH 1.2 for a period of 2 hours, followed by pH 6.8. The second dose pellets were passed through pH 1.2, pH 6.8 followed by pH 7.5 for the rest of the study. Conclusion: The study concluded that the formulated multiparticulate dosage form of ketoprofen was able to relieve circadian symptoms of rheumatoid arthritis during midnight and early morning.  相似文献   

8.
Objective: Simple Eudragit microparticles loaded with prednisolone and chitosan-succinyl-prednisolone conjugate microparticles coated with Eudragit were prepared and characterized in vitro in order to obtain their basic features as a colonic delivery system.

Materials and methods: Both types of microparticles were prepared by the emulsification-solvent evaporation modified somewhat from the previous one. Their particle size, shape and their drug content were investigated, and in vitro release profiles were examined using JP-15 1st fluid (pH 1.2), JP-15 2nd fluid (pH 6.8) and PBS (pH 7.4) as release media. Furthermore, the regeneration of conjugate microparticles from Eudragit-coated microparticles was investigated under the same incubation conditions.

Results: Simple Eudragit S100 (EuS) microparticles (ES-M) were almost spherical, ca. 1.2 μm diameter, and PD content ca. 3.7% (w/w). Conjugate microparticles (CS-M1) and EuS-coated conjugate microparticles (CS-M1/S) had particle sizes of ca. 2.8 and 15.3 μm, respectively, and PD contents of 5.4 and 2.1% (w/w), respectively. ES-M exhibited suppressed release at pH 1.2, gradual release at pH 6.8 and rapid release at pH 7.4. CS-M1 showed no release at pH 1.2, and very slow release at pH 6.8 and 7.4. CS-M1 regenerated poorly from CS-M1/S at pH 6.8.

Conclusions: Simple Eudragit micrparticles and Eudragit-caoted conjugate microparticles, prepared by the present methods, were found in vitro to be possibly useful as the delivery systems of PD to the lower intestine, although there were differences in their release rate and morphological features.  相似文献   

9.
The aim of this study was to develop Cyclosporin A (CsA) sustained-release pellets which could maintain CsA blood concentration within the therapeutic window throughout dosing interval and to investigate the in vitro–in vivo correlation (IVIVC) in beagle dogs. The CsA sustained-release pellets (CsA pellets) were prepared by a double coating method and characterized in vitro as well as in vivo. Consequently, the CsA pellets obtained were spherical in shape, with a desirable drug loading (7.18?±?0.17?g/100?g), good stability and showed a sustained-release effect. The Cmax, Tmax and AUC0–24 of CsA pellets from the in vivo pharmacokinetics evaluation was 268.22?±?15.99?ng/ml, 6?±?0?h and 3205.00?±?149.55?ng·h/ml, respectively. Compared with Neoral®, CsA pellets significantly prolonged the duration of action, reduced the peak blood concentration and could maintain a relatively high concentration level till 24?h. The relative bioavailability of CsA pellets was 125.68?±?5.37% that of Neoral®. Moreover, there was a good correlation between the in vitro dissolution and in vivo absorption of the pellets. In conclusion, CsA pellets which could ensure a constant systemic blood concentration within the therapeutic window for 24?h were prepared successfully. Meanwhile, this formulation possessed a good IVIVC.  相似文献   

10.
Purpose: To develop an osmotically-driven pellet coated with polymeric film for sustained release of oxymatrine (OMT), a freely water soluble drug.

Methods: Pellet containing OMT and sodium chloride (NaCl), an osmotically active agent, were prepared by extrusion/spheronization and then coated with acrylic copolymers (Eudragit® RS 30 D) by the fluidized bed coating process. In vitro release and swelling behavior studies were employed to optimize and to evaluate the sustained-release behavior from the osmotically-driven pellets with film coated. Finally, in vivo evaluation in rabbits was employed to investigate the sustained plasma level of OMT and its active metabolite matrine.

Results: It was found that the F3 formulation, prepared with 20% NaCl and an 8% coating level, showed a continuous NaCl-induced water influx into the pellets providing a gradual sustained release of OMT for over 12?h. Finally, we confirmed that oral OMT with sustained release led to a gradual sustained plasma profile of both OMT, with a reduction in its bioavailability, and MT with an increase in the bioavailability compared with that of oral OMT with immediate release. Conclusions: The pharmaceutical parameters obtained suggested the potential usefulness of oral OMT with sustained release for the treatment of stress ulcers, as well as reducing the risk of MT-induced side effects.  相似文献   

11.
Objective of this study was to develop Vancomycin HCl pellets loaded with Saccharomyces boulardii (S.b.) for pH-dependent system and CODES? for augmenting the efficacy of Vancomycin HCl in the treatment of colitis. Pellets were prepared by extrusion–spheronization. In the pH-dependent system, the pellets were coated with Eudragit FS 30D. These pellets exhibited spherical form and a uniform surface coating. The CODES? system consisted of three components: core containing mannitol, drug and probiotic, an inner acid-soluble coating layer, and an outer layer of enteric coating material. Statistical factorial design was used to optimize both formulations. Scanning electron micrographs of coated pellets revealed uniform coating. In vitro drug release of these coated pellets was studied sequentially in various buffers with (2%) and without rat cecal content for a period of 12?h. From the optimized pH-dependent formulation, F6 (20% w/w coating level and 15% w/v concentration of polymer), higher amount of probiotic was released in earlier time phase (first 5?h) as compared to the CODES? and so R5 [containing acid-soluble inner coating layer (15% w/w coating level and 12% w/v concentration of Eudragit E100), and an outer layer of enteric coating material (12% w/w coating level and 10% w/v concentration of Eudragit L100)] was considered as the best formulation after confirming in vivo X-ray studies conducted on rabbits, suggesting that Vancomycin HCl and S.b. may be co-administered as pellets [CODES?] to enhance the effectiveness of Vancomycin HCl in the treatment of colitis without its associated side effects, which can only be confirmed after clinical trials.  相似文献   

12.
Tamsulosin hydrochloride (TSH) controlled-release capsule (pellets) was successfully prepared using a novel, simple, and flexible multiunit drug delivery system, which consisted of two different coated pellets. The TSH-loaded core pellets consisting of microcrystalline cellulose (MCC), lactose, Carbopol® 974P, and the active agent, were prepared by extrusion/spheronization method. Eudragit® NE30D and Eudragit® L30D-55 were used as the coating materials to prepare sustained-release (SR) pellets and enteric-release (ER) pellets. The coated pellets were prepared using two different equipments: centrifugal coater and fluidized-bed coater. By adjusting the ratio of SR and ER pellets, more than one blend ratios, which meet the in vitro release criterion were obtained. A similarity factor (f2) was employed to choose the optimum proportion compared with the commercial product (Harnal® capsule). The morphology of the pellet surfaces was examined by scanning electron microscopy (SEM) before and after dissolution. The release profiles were significantly affected by changing the proportions of SR and ER. The optimum ratio is SR:ER?=?2:1 using a centrifugal coater (f2?=?61.93) and SR:ER?=?3:1 using a fluidized coater (f2?=?66.42). This result suggests that blending these two-part pellets (SR and ER) can provide an alternative to preparing a controlled-release dosage form, instead of blending of the coating polymer.  相似文献   

13.
The objective of this study was to prepare and evaluate metoprolol tartrate sustained-release pellets. Cores were prepared by hot melt extrusion and coated pellets were prepared by hot melt coating. Cores were found to exist in a single-phase state and drug in amorphous form. Plasticizers had a significant effect on torque and drug content, while release modifiers and coating level significantly affected the drug-release behavior. The mechanisms of drug release from cores and coated pellets were Fickian diffusion and diffusion–erosion. The coated pellets exhibited sustained-release properties in vitro and in vivo.  相似文献   

14.
This prospective, multicenter, proof‐of‐concept study aimed to evaluate the possibility to reduce the ordinary heparin dose and the systemic anti‐Xa activity during hemodialysis (HD) sessions using a new heparin‐grafted HD membrane. In 45 stable HD patients, the use of a heparin‐grafted membrane with the ordinary heparin dose was followed by a stepwise weekly reduction of dose. Reduction was stopped when early signs of clotting (venous pressure, quality of rinse‐back) occurred during two out of three weekly HD sessions. Heparin dose was decreased for 67% of patients resulting in the lowering of these patients' anti‐Xa activity by 50%. Dose reductions were achieved with both types of heparin (low‐molecular‐weight heparin: 64 ± 14 to 35 ± 12 IU/kg, P < 0.0001; unfractionated heparin: 82 ± 18 to 46 ± 13 IU/kg, P < 0.0001) resulting in a decrease of anti‐Xa activity at dialysis session end (low‐molecular‐weight heparin: 0.51 ± 0.25 to 0.25 ± 0.11 IU/mL, P < 0.0001; unfractionated heparin: 0.28 ± 0.23 to 0.13 ± 0.07 IU/mL, P < 0.0001). Failure to further decrease heparin dose was related to signs of clotting in blood lines (57% of sessions), in dialyzer (9%), or both (34%). Significant reduction of heparin dose and anti‐Xa activity at the end of HD sessions was possible in stable HD patients using heparin‐grafted membrane. HD patients who require low anti‐Xa activity at the end of HD sessions might benefit from a heparin‐grafted membrane to reduce bleeding risk and other heparin adverse events.  相似文献   

15.
Large-bore dual lumen in-dwelling venous catheters are used in hemodialysis. These catheters are usually locked with heparin after the treatment. This study addressed the underappreciated postdialysis coagulopathy that can result. Thirty-six patients were included: 7 dialyzed through arterio-venous fistulae, 29 through in-dwelling venous catheters. The latter group was further subdivided according to whether they received heparin or heparin-free dialysis. To assess the heparin lock, a full-dose heparin lock as well as a much weaker heparin lock and a citrate lock were used. To assess the coagulopathy, blood was taken 1 hr after dialysis. The activated partial thromboplastin time (APTT) and anti-Xa level was measured. Additionally, 6 venous catheters were removed and the amount of fluid expelled upon locking with saline was measured. Clotting from the patient group with arterio-venous fistulae was normal following dialysis. The patients with in-dwelling venous catheters and heparin locks had significantly deranged clotting; 6 out of 10 patients had abnormal APTT results. All patients with catheters, heparin-free dialysis, and heparin locks had deranged clotting (7 out of 7). The rate decreased significantly when heparinized saline was used as a lock. A subset of patients had a citrate lock rather than a heparin lock; the clotting results normalized in all but one patient. An in vitro study demonstrated immediate leakage of fluid from the end of the ports upon locking. Significant postdialysis anticoagulation can occur after dialysis, which can be attributed to the heparin line locks. This risk is considerably reduced when a citrate lock is used instead.  相似文献   

16.
The objective of this study was to develop doxofylline-loaded sustained-release pellets coated with Eudragit NE30D alone (F1) or blend of Eudragit RL30D/RS30D (F2) and further evaluate their in vitro release and in vivo absorption in beagle dogs. Doxofylline-loaded cores with a drug loading of 70% (w/w) were prepared by layering drug-MCC powder onto seed cores in a centrifugal granulator and then coating them with different kinds of polymethacrylates in a bottom-spray fluidized bed coater. Dissolution behaviour of these formulations was studied in vitro under various pH conditions (from pH 1.2 to pH 7.4) to evaluate the effect of pH on drug release profiles. It was found that F2 produced a better release profile than F1 did and two different release mechanisms were assumed for F1 and F2, respectively. The relative bioavailability of the sustained-release pellets was studied in six beagle dogs after oral administration in a fast state using a commercially available immediate release tablet as a reference. Coated with Eudragit NE30D and a blend of Eudragit RL30D/RS30D (1:12), at 5% and 8% coating level, respectively, the pellets acquired perfect sustained-release properties and good relative bioavailability, with small fluctuation of drug concentration in plasma. But combined use of mixed Eudragit RL30D/RS30D polymers with proper features as coating materials produced a longer T(max), a lower C(max) and a little higher bioavailability compared to F1 (coated with Eudragit NE30D alone). The C(max), T(max) and relative bioavailability of F1 and F2 coated pellets were 15.16 microg/ml, 4.17 h, 97.69% and 11.41 microg/ml, 5 h, 101.59%, respectively. Also a good linear correlation between in vivo absorption and in vitro release was established for F1 and F2, so from the dissolution test, formulations in vivo absorption can be properly predicted.  相似文献   

17.
Preparation and characterization of heparin-loaded polymeric microparticles   总被引:1,自引:0,他引:1  
Microparticles containing heparin were prepared by a water-in-oil-in-water emulsification and evaporation process with pure or blends of biodegradable (poly-epsilon-caprolactone and poly(D,L-lactic-co-glycolic acid)) and of positively-charged non-biodegradable (Eudragit RS and RL) polymers. The influence of polymers and some excipients (gelatin A and B, NaCl) on the particle size, the morphology, the heparin encapsulation rate as well as the in vitro drug release was investigated. The diameter of the microparticles prepared with the various polymers ranged from 80 to 130 microns and was found to increase significantly with the addition of gelatin A into the internal aqueous phase. Microparticles prepared with Eudragit RS and RL exhibited higher drug entrapment efficiency (49 and 80% respectively) but lower drug release within 24 h (17 and 3.5% respectively) than those prepared with PCL and PLAGA. The use of blends of two polymers in the organic phase was found to modify the drug entrapment as well as the heparin release kinetics compared with microparticles prepared with a single polymer. In addition, microparticles prepared with gelatin A showed higher entrapment efficiency, but a significant initial burst effect was observed during the heparin release. The in vitro biological activity of heparin released from the formulations affording a suitable drug release has been tested by measuring the anti-Xa activity by a colorimetric assay with a chromogenic substrate. The results confirmed that heparin remained unaltered after the entrapment process.  相似文献   

18.
Gliclazide (GLZ)-loaded microparticles made with a polymeric blend were prepared by a solvent evaporation technique. Organic solutions of two polymers, poly(?-caprolactone) (PCL) and Eudragit RS (E RS) or ethyl cellulose (EC), in different weight ratios, and 33.3% of GLZ were prepared and dropped into aqueous solution of poly vinyl alcohol, in different experimental conditions, achieving drug-loaded microparticles. The obtained microparticles were characterized in terms of yield of production, shape, size, surface properties, drug content, and in vitro drug release behavior. The physical state of the drugs and the polymer was determined by scanning electron microscopy (SEM), Fourier transform infra red and differential scanning calorimetry. Following the in vitro release studies microparticles made from blends of polymer, PCL/E RS or EC showed slower drug release than microparticles made from single PCL polymer. Surface morphology also revealed presence of porous and spherical structure of microparticles. Microparticles showing sustained release of GLZ were examined in rabbits and plasma GLZ concentrations were calculated using HPLC method of assay.  相似文献   

19.
A phase-transited, nondisintegrating, controlled release, asymmetric membrane capsular system for poorly water-soluble model drug flurbiprofen was developed and evaluated both in vitro and in vivo for osmotic and controlled release of the drug. Asymmetric membrane capsules (AMCs) were prepared using fabricated glass mold pins through wet phase inversion process. Effect of varying osmotic pressure of the dissolution medium on drug release was studied. Membrane characterization by scanning electron microscopy showed an outer dense region with less pores and an inner porous region for the prepared asymmetric membrane. In vitro release studies for all the prepared formulations were carried out (n = 6). Statistical test was applied for in vitro drug release at p > .05. Predicted in vivo concentration from in vitro release data closely matched the minimum effective concentration (in vivo) level achieved by the drug from its release through phase-transited AMC in rabbits for the first hour. The drug release was found to be independent of the pH but dependent on the osmotic pressure of the dissolution medium. In vivo pharmacokinetic studies showed level A correlation (R2 > .99) with 42.84% relative bioavailability compared to immediate release tablet of flurbiprofen. Excellent correlation achieved suggested that the in vivo performance of the AMCs could be accurately predicted from their in vitro release profile.  相似文献   

20.
Background: Poloxamer 188 is a safe biocompatible polymer that can be used in protein drug delivery system. Aim: In this study, a new heparin–poloxamer 188 conjugate (HP) was synthesized and its physicochemical properties were investigated. HP structure was confirmed by Fourier transform infrared spectroscopy (FTIR) and Hydrogen-1 nuclear magnetic resonance spectroscopy (1H-NMR). Content of the conjugated heparin was analyzed using Toluidine Blue. The critical micelle concentration (CMC) of the copolymer was determined by a fluorescence probe technique. The effect of HP on the gelation of poloxamer 188 was characterized by the rheological properties of the HP–poloxamer hydrogels. Solubility and viscosity of HP were also evaluated compared with poloxamer 188. Results: From the results, the solubility of the conjugated heparin was increased compared with free heparin. The content of heparin in HP copolymer was 62.9%. The CMC of HP and poloxamer 188 were 0.483 and 0.743 mg/mL, respectively. The gelation temperature of 0.4 g/mL HP was 43.5°C, whereas that of the same concentration of poloxamer 188 was 37.3°C. With HP content in poloxamer 188 solution increasing, a V-shape change of gelation temperature was observed. Conclusion: Considering the importance of poloxamer 188 in functional material, HP may prove to be a facile temperature-sensitive material for protein drug-targeted therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号