首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Abstract

A suitable selection of the filler metal is vital for producing satisfactory brazed joints. The wettability of brazing alloys with base metals depends on physical properties such as surface tension, density, melting point, and viscosity. Thermal conductivity and electrical resistivity are also important since the filler metal is frequently required to have similar values to those of the base metal. In the present paper, the physical properties of liquid alloys relevant to brazing have been evaluated. Six different filler metal systems were analysed, comprising alloys based on Ag, Al, Au, Cu, Ni, and Ti. Results show that the viscosity values for most binary brazing filler alloys are of the order of 2–8 mPa s, with Cu and Al alloys exhibiting the lowest viscosities. The surface tensions of brazing alloys vary from 800 to 1800 mN m-1, with the lowest surface tension values corresponding to the Ag and Al alloys. Thermal conductivity and electrical resistivity values fall in the range 10–200 W m-1 K-1 and 17–300 μΩ cm, respectively.  相似文献   

2.
In the present study, Sn-0.7Cu and Sn-3.5Ag lead-free solders used in the electronics packaging industry were reinforced with different volume percentages of nano-size alumina and tin oxide particulates, respectively, to synthesize two new sets of nanocomposites. These composites were developed using microwave-assisted powder metallurgy route followed by extrusion. The effects of addition of particulates on the physical, microstructural, and mechanical properties of the nanocomposites were investigated. Mechanical properties (microhardness, 0.2% YS, and UTS) for both composite systems increase with the presence of particulates. The best tensile strength was realized for composite solders reinforced with 1.5 vol.% alumina and 0.7 vol.% tin oxide particulates, which far exceeds the strength of eutectic Sn-Pb solder. The morphology of pores was observed to be one of the most dominating factors affecting the strength of materials.  相似文献   

3.
The temperature dependences of the electrical conductivity of nanocomposites based on low-density polyethylene (LDPE) and Cu2S nanoparticles are studied. It is shown that, starting from a certain temperature, the temperature dependence of the electrical conductivity is described by the following Arrhenius equation: σ = σ0exp(–E/kT); the logσ = f(103/T) dependence has several linear portions with different activation energy values. The observed behavior of the logρ = f(1/T) dependence of the LDPE/Cu2S nanocomposites suggests that an increase in temperature is accompanied by an increase in the mobility of the structural units of the polymer matrix in the bulk and on the surface of the sample. The polymer–filler interfacial interactions decrease the electrical resistance of the boundary layer and thereby lead to a decrease in the activation energy of the charge carriers and an increase in the electrical conductivity of the nanocomposite.  相似文献   

4.
Electrochemical evaluation of ASTM A36 steel was performed in ethanolic solutions containing small concentrations of water ranging from 0 to 10 vol.%. Electrochemical techniques such as open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization were utilized to analyze corrosion parameters. A fixed concentration of chloride, as per the ASTM specification for fuel grade ethanol, was added to increase the conductivity of the solutions. The effects of water and oxygen on the corrosion behavior of steel in these solutions have been discussed. Pitting corrosion of the steel specimens in these solutions was evaluated using scanning electron microscopy (SEM) and pitting analysis. This investigation was performed to establish a baseline for the microbiologically influenced corrosion (MIC) of steel in ethanolic solutions.  相似文献   

5.
The composites of multi-walled carbon nanotubes (MWNT) wrapped with low bandgap conjugated polymer and poly(methyl methacrylate) (PMMA) were prepared for transparent conductive films. NIR-absorbing poly(ethyl thieno[3,4-b]thiophene-2-carboxylate) (PTTEt) with Eg of 1.0 eV was used in this study. Upon hybridization with MWNT, PTTEt in an insulating state became partially conductive due to electron transfer from PTTEt to MWNT, meaning that PTTEt can function as conductive glue interconnecting MWNT in a PMMA matrix. The electrical conduction of the composites (PTTEt-MWNT/PMMA), consisting of PTTEt-wrapped MWNT (PTTEt-MWNT/PMMA) and PMMA, showed the percolation at 0.10 wt% MWNT loading, which was ca. 0.18 wt% lower than the composites of MWNT and PMMA (MWNT/PMMA). The maximum conductivity of PTTEt-MWNT/PMMA, on the other hand, was one order of magnitude lower than that of MWNT/PMMA, suggesting that PTTEt incorporation onto MWNT for transparent conductive films is effective within a specific range of MWNT loadings (i.e., between percolation thresholds of MWNT/PMMA and PTTEt–MWNT/PMMA). The comparison of transmittance of PTTEt–MWNT/PMMA (0.18 wt% MWNT) with MWNT/PMMA (0.32 wt% MWNT), possessing the same conductivities (3 × 10?3 S cm?1), showed ca. 10% enhanced transmittance at 550 nm. These results imply that hybridization of low bandgap conjugated polymers with carbon nanotubes can be utilized for the reduction of percolation threshold and the increase of optical transparency without sacrificing conductivities at low MWNT loadings.  相似文献   

6.
《Intermetallics》2000,8(9-11):1169-1174
In this study, an extrusion process has been developed to produce defect free, high-density rods of Mo–Si–B material. An initial powder composition (53.5 vol.%, 91 wt.%) of 66 vol.% Mo5Si3Bx (T1)–16 vol.% MoB–18 vol.% MoSi2 was mixed with a paraffin-wax based binder (46.5 vol.%, 9 wt.%) and extruded using a twin-screw extruder. Following binder removal by a combination process of wicking and thermal degradation, the material was sintered at 1800°C. The bulk density of the sintered material was 90–92% of theoretical. Thorough binder removal was evidenced by low impurity levels: 258±6 ppm carbon and 772±10 ppm oxygen. The material demonstrated excellent high temperature oxidation resistance. The calculated parabolic rate constant is 1.1×10−2 mg2/cm4/h at 1600°C. The extruded material was also successfully tested as a resistance heating element. These materials show promise for the development of heating elements with enhanced performance compared to current MoSi2-based heating elements.  相似文献   

7.
In this study, the thermoelectric properties of 0.1 wt.% Cdl2-doped n-type Bi2Te2.7Sb0.3 compounds, fabrieated by SPS in a temperature range of 250°C to 350°C, were characterized. The density of the compounds was increased to approximately 100% of the theoretical density by carrying out consolidation at 350°C. The Seebeck coefficient, thermal conductivity, and electrical resistivity were dependent on a hydrogen reduction process and the sintering temperature. The Seebeck coefficient and the electrical resistivity increased with the reduction process. Also, electrical resistivity decreased and thermal conductivity increased with sintering temperature. The results suggest that carrier density and mobility vary according to the reduction process and sintering temperature. The highest figure of merit, 1.93×10−3 K−1, was obtained for the compound consolidated at 350°C for 2 min.  相似文献   

8.
《Intermetallics》2001,9(1):25-31
Alloys with the nominal composition Mo–12Si–8.5B (at.%) were prepared by arc-melting or powder-metallurgical processing. Cast and annealed alloys consisted of approximately 38 vol.% α-Mo in a brittle matrix of 32 vol.% Mo3Si and 30 vol.% Mo5SiB2. Their flexure strengths were approximately 500 MPa at room temperature, and 400–500 MPa at 1200°C in air. The fracture toughness values determined from the three-point fracture of chevron-notched specimens were about 10 MPa m1/2 at room temperature and 20 MPa m1/2 at 1200°C in air. The relatively high room temperature toughness is consistent with the deformation of the α-Mo particles observed on fracture surfaces. Three-point flexure tests at 1200°C in air and a tensile test at 1520°C in nitrogen indicated a small amount of high temperature plasticity. Extrusion experiments to modify the microstructure of cast alloys were unsuccessful due to extensive cracking. However, using powder-metallurgical (PM) techniques, microstructures consisting of Mo3Si and Mo5SiB2 particles in a continuous α-Mo matrix were fabricated. The room temperature fracture toughnesss of the PM materials was on the order of 15 MPa m1/2.  相似文献   

9.
The results of a study of the temperature and frequency dependences of the dielectric permeability and dielectric loss of PVDF + TlInS2 and PVDF + TlInS2 + Al composites at frequencies of 10–105 Hz and temperatures of 20–150°C and the effect of 50-nm aluminum nanoparticles on the dielectric properties of PVDF + x vol % TlInS2 composite materials are described. It is revealed that an increase in the percentage of the TlInS2 filler in the matrix leads to an increase in the dielectric permeability and dielectric loss of these materials. An increase in the amount of the PVDF + x vol % TlInS2 + y vol % Al composites is also observed with an increase in the aluminum nanoparticle content in the composite; this effect leads to a change in the Maxwell–Wagner space-charge polarization. Under the effect of aluminum nanoparticles, the pattern of the frequency dispersion of the dielectric loss of the studied composites changes significantly.  相似文献   

10.
In the present study, magnesium nanocomposites were fabricated using magnesium as matrix and nano-yttria as reinforcement. Nanocomposites with 0.2 and 0.7 vol.% of Y2O3 particulates with an average size of 29-50 nm were synthesized blend-press-sinter powder metallurgy technique followed by hot extrusion. Conventional slow heating and microwave assisted rapid heating sintering techniques were used. Microstructural characterization of the materials revealed fairly uniform distribution of reinforcement with the presence of minimal porosity in all of the processed materials, while significant grain refinement in the cases of conventionally sintered materials. Tensile properties characterization of the conventional and microwave sintered nanocomposites revealed that significant and resembling increase in the 0.2% yield strength and ultimate tensile strength of magnesium matrix with the increasing presence of reinforcement. The ductility and work of fracture of magnesium matrix increased significantly in the case of conventionally sintered nanocomposites when compared to the microwave assisted sintered nanocomposites.  相似文献   

11.
Abstract

This paper presents the works carried out to synthesise undoped and doped polyaniline–clay nanocomposite (PAniCN) by chemical oxidative polymerisation of aniline monomers in the presence of Cloisite 30B nanoclay powders. Fourier transform infrared analysis was used to characterise the synthesised nanocomposites. Electrical conductivity test was used to compare the conductivity of different PAniCN powders. The synthesised nanocomposites were added to a zinc rich ethyl silicate primer to modify the barrier properties of the primer. Unmodified and modified primers were applied on the carbon steel panels separately. The corrosion protection performances of different primers were evaluated via determining open circuit potential (OCP) and electrochemical impedance spectroscopy during immersing in 3·5% sodium chloride solution for a period of 120 days. Electrochemical impedance spectroscopy analysis showed that the coating resistances Rc of modified primers were higher than the original primer. Coating resistance of the undoped and doped PAniCN modified primers and original primer were reached to 6·056×103, 5·565×103 and 2·773×103 Ω cm2 after 120 days of immersing respectively. Open circuit potential measurements were carried out in order to evaluate the cathodic protection ability and duration. These measurements revealed that although the undoped PAniCN modified primer showed the highest resistance, the OCP of the panels coated with this modified primer pass through safety region [?0·86 V(SCE)] after 120 days of immersion. Besides salt spray test (according to ASTM B117-03) was used as a widespread accelerated test to evaluate the protection performances of primers. In salt spray test spots of rust appear on the surface of the panels coated with undoped PAniCN modified primer after 1500 h of exposure. The results of OCP measurement test were confirmed by the results of salt spray test.  相似文献   

12.
The formation, microstructure and properties of high-density TiN/Ti5Si3 ceramic composites created by the pyrolysis of preceramic polymer with filler were investigated. Methylpolysiloxane was mixed with TiH2 as filler and ceramic composites prepared by pyrolysis at 1200°C to 1600°C under N2, Ar and vacuum were studied. When a specimen with 70 vol.% TiH2 was pyrolyzed up to 1600°C in a vacuum after a preheat treatment at 850°C in a N2 atmosphere and subsequently heat-treated at 1600°C for 1 h under Ar at a pressure of 2 MPa, a ceramic composite with full density was obtained. The microstructure of the ceramic composite was composed of TiN and Ti5Si3 phases. Under specific pyrolysis conditions, a ceramic composite with a density of 99.2 TD%, a Vickers hardness of 18 GPa, a fracture toughness of 3.5 MPam1/2, a flexural strength of 270 MPa and a electrical conductivity of 6200 ohm−1·cm−1 was obtained.  相似文献   

13.
Gas atomized 4J36 alloy powder was milled for 72 h then mixed with ZrW2O8 powder and sintered at 600°C for 4 h under argon atmosphere. 4J36/ZrW2O8 composites containing 10 vol.%, 20 vol.%, 30 vol.%, and 40 vol.% ZrW2O8 were fabricated, the relative density of which ranged from 70% to 80%. Thermal expansion coefficients of the composites decreased as the amount of ZrW2O8 increased, in agreement with the rule of the mixture. The coefficient of thermal expansion of the 4J36/40 vol.%ZrW2O8 composite in 25–100°C is 0.55 × 10−6/°C.  相似文献   

14.
Ni-doped CoSb3 skutterudites were prepared by encapsulated induction melting and their thermoelectric and electronic transport properties were investigated. The negative signs of Seebeck and Hal coefficients for all Ni-doped specimens revealed that Ni atoms successfully acted as n-type dopants by substituting Co atoms. The carrier concentration increased as the Ni doping content increased, and the Ni dopants could generate excess electrons. However, the carrier mobility decreased as the doping content increased, which indicates that the electron mean free path was reduced by the impurity scattering. The Seebeck coefficient and the electrical resistivity decreased as the carrier concentration increased, as the increase in carrier concentration by doping overcame the decrease in the carrier mobility by impurity scattering. The Seebeck coefficient showed a negative value at all temperatures examined and increased as the temperature increased. The temperature dependence of electrical resistivity suggested that Co1−xNixSb3 is a highly degenerate semiconducting material. Thermal conductivity was considerably reduced by Ni doping, and the lattice contribution was dominant in the Ni-doped CoSb3.  相似文献   

15.
Alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes (CNT) were fabricated by advanced powder processing techniques and consolidated by spark plasma sintering. Raman spectroscopy revealed that single-walled carbon nanotubes (SWCNT) begin to break down at sintering temperatures >1150 °C. Nuclear magnetic resonance showed that, although thermodynamically unlikely, no Al4C3 formed in the CNT-alumina nanocomposites, such that the nanocomposite can be considered as purely a physical mixture with no chemical bond formed between the nanotubes and ceramic matrix. In addition, in situ single-edge notched bend tests were conducted on niobium and/or CNT-reinforced alumina nanocomposites to assess their toughness. Despite the absence of subcritical crack growth, average fracture toughness values of 6.1 and 3.3 MPa m1/2 were measured for 10 vol.% Nb and 10 vol.% Nb-5 vol.% SWCNT-alumina, respectively. Corresponding tests for the alumina nanocomposites containing 5 vol.% SWCNT, 10 vol.% SWCNT, 5 vol.% double-walled-CNT and 10 vol.% Nb yielded average fracture toughnesses of 3.0, 2.8, 3.3 and 4.0 MPa m1/2, respectively. It appears that the reason for not observing improvement in fracture toughness of CNT-reinforced samples is because of either damage to CNTs or possibly non-optimal interfacial bonding between CNT-alumina.  相似文献   

16.
Annealed specimens of 99.99% pure iron were irradiated with 500, 750, 1000, and 1250 Nd:YAG laser shots. The laser fluence and laser intensity at the laser irradiation spot on the target surface were 4.4 × 103 J/cm2 and 4.8 × 1011 W/cm2, respectively. Vickers hardness of irradiated specimens was measured at various points separated by 0.5 mm in four different mutually perpendicular directions around the laser irradiation spot. The surface hardness profile for each irradiated specimen shows an increasing trend in surface hardness till a distance of 3.5 mm from the reference point. The average surface hardness (ASH) is found to increase up to 21% and electrical resistivity increases up to 50% as the number of laser shots is increased to 1250. A linear relationship between electrical resistivity and ASH is observed. Moreover, the ASH follows the well-known Hall-Petch relation, indicating that the crystallite boundaries impede the motion of dislocations to a greater extent as the crystallite size gets smaller.  相似文献   

17.
The microstructure and thermophysical properties of aluminum-matrix composites have been studied, in which a granulated Al–Zn–Mg–Cu alloy has been used as the matrix, and SiC particles taken in the amounts of 10, 20, and 30 vol % have bee used as the filler. It has been shown that, with an increase in the amount of the filler, the temperatures of the solidus and liquidus of the composites and the values of the thermal expansion coefficient and density increase, whereas the heat capacity, thermal conductivity, and thermal diffusivity decrease. The heat capacity of the composite depends on the amount of the filler: upon heating from 25 to 500°С, the heat capacity of the composite with 10 vol % SiC increases by only 16%, while that of the composite with 20 vol % SiC increases by 19%; and, at 39 vol % SiC, it increases by 36%.  相似文献   

18.
Thermal expansion and electrical resistivity of alloys based on Sn-Zn eutectic with 0.5, 1.0, 1.5, and 4.0 wt.% additions of In were studied. Thermal expansion measurements were performed using thermomechanical analysis tester over 223-373 K temperature range. Electrical resistivity measurements were performed with four-probe method over 298-423 K temperature range. The electrical resistivity of alloys increases linearly with temperature and concentration of In; also coefficient of thermal expansion of the studied alloys increases with In concentration. Scanning electron microscopy revealed simple eutectic microstructure with In dissolved in Sn-rich matrix. The results obtained were compared with the available literature data. Spreading tests on Cu of Sn-8.8Zn alloys with 0.5, 1.0, and 1.5 at.% of In were performed. Wetting tests were performed at 250 °C, by sessile drop method, by means of flux, and wetting times were 3, 8, 15, 30, and 60 min. In general, no clear effect of wetting time on spreading was observed.  相似文献   

19.
Cu/Y1Ba2Cu3O7?x superconducting composite wires have been fabricated using the powder-in-tube coextrusion process. Increase in load during the extrusion process seems to indicate that powder particles from the deformation zone of the die travel up toward the unextruded part of the billet and gradually increase the density in that part to some saturation value, which prohibits further extrusion at moderate to heavy applied load. A powder removal technique has been devised to perform full length extrusion under such conditions. Powder removal, however, is not required if the extrusion ratio is reduced sufficiently. The extrusion ratio that will give a full length extrusion without powder removal seems to be a function of starting billet length. Extrusion ratio of 2.52 gives smooth full length extrusions with 25.4 mm (1 in.) starting billet length at reasonable load values. Four probe resistivity and magnetic susceptibility measurements indicate a critical temperature (Tc) value of the formed wire to be close to 88 K. Density measurements using the volume displacement method indicate a value of 4.819 g/cm3, which is approximately 76.5% of the theoretical density. M.M. Dehghani and A. Ahmad are Assistant Professor and  相似文献   

20.
The thermal diffusivity of Fe-Al alloys in the concentration range 22 to 50 at.% Al was measured within a temperature range of 20 to 600 °C. The thermal diffusivity of the Fe-25 and 28 at.% Al alloys decreases with increasing temperature up to the Curie temperature, and then it increases up to the temperature when the D03 ↔ B2 transformation occurs. The thermal diffusivity of Fe-22 at.% Al alloys increases with rising temperature up to the temperature when D03 ↔ B2 transformation occurs, and then it decreases. A further decrease in thermal diffusivity follows up to the Curie temperature. The thermal diffusivity of Fe-34 and Fe-40 at.% Al increases monotonically with the rising temperature. The thermal diffusivity of Fe-50 at.% Al alloys decreases only up to 100 °C, and does not change any further with increasing temperature. Thermal conductivity is the highest for Fe-25 and Fe-50 at.% Al alloys at room temperature. Thermal conductivity rises for all studied alloys with increasing temperature. The smallest increase was registered for Fe-25 at.% Al alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号