首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
At low doses, the carcinogenic hexacyclic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P) forms DNA adducts in human MCF-7 cells exclusively through formation of the (–)-anti?(11R, 12S)-diol (13S, 14R)-epoxide (DB[a,l]PDE) via its metabolic precursor, the (–)-(11R, 12R)-diol. The same result was obtained by exposure of V79 cells stably expressing human cytochrome P450 (P450) 1B1. Although several other metabolites such as the 7-phenol and a 11, 12-diol phenol are formed, no other DNA adducts are detectable after exposure to 0.1 μM DB[a,l]P. Exposure to 1 μM DB[a,l]P leads to the formation of low levels of (+)-syn?DB[a,l]P-DE-DNA adducts through intermediate generation of the (+)-(11S, 12S)-diol. In contrast, treatment of P450 1A1-expressing V79 cells results also in the formation of several polar DNA adducts. Incubation of the trans?8,9-diol and trans?11, 12-enantiomers of DB[a,l]P demonstrated that all polar DNA adducts detected in 1A1-expressing cells resulted from intermediate formation of the (–)-trans?11, 12-diol. Although the K-region trans?8,9-diol is metabolically converted to several diol phenols and bis?diols, this compound does not contribute to the strong DNA binding or cytotoxicity observed after exposure of P450 1A1- and 1B1-expressing cells to the parent hydrocarbon.  相似文献   

2.
Racemic 2-hydroxy-3-methylcholanthrene (rac-2-OH-3MC) is a potent carcinogen and 2S-OH-3MC is the most abundant metabolite formed in the metabolism of 3-methylcholanthrene (3MC) by rat liver microsomes. Eighteen identifiable metabolites were formed in the metabolism of rac-2-OH-3MC by liver microsomes prepared from phenobarbital-treated rats. Metabolites were separated by sequential use of reversed-phase and normal-phase high performance liquid chromatography (HPLC) and characterized by ultraviolet-visible absorption, mass, and circular dichroism spectral, and chiral stationary phase (CSP) HPLC analyses. Identified metabolites were: 2-OH-3MC 7,8-dihydrodiol (enriched in 7R,8R enantiomer), 2-OH-3MC 9,10-dihydrodiol (2S,9R,10R:2R,9S,10S ≈ 27:73 and 2R,9R,10R:2S,9S,10S ≈ 81:19), 2-OH-3MC 11,12-dihydrodiol (2R,11R,12R:2S,11S,12S ≈ 5:95 and an essentially optically pure 2S,11R,12R enantiomer), 3MC trans-1,2-diol (1S,2S:1R,2R ≈ 68:32), 3MC cis-1,2-diol (1S,2R:1R,2S ≈ 18:82), 2-OH-3-hydroxymethyl-cholanthrene (2-OH-3-OHMC, 2R:2S ≈ 19:81), 2-OH-3-OHMC 9,10-dihydrodiol (9R,10R:9S,10S ≈ 62:38), 3MC-2-one 9,10-dihydrodiol (9R,10R:9S,10S ≈ 7:3), 3MC cis-1,2-diol:trans-9,10-dihydrodiol, 8-hydroxy-2-OH-3-OHMC, 9-hydroxy-2-OH-3MC, 10-hydroxy-2-OH-3MC, and 3MC-2-one. The enantiomer ratios of some metabolites formed were determined by circular dichroism spectra and/or CSP-HPLC. Six 9,10-dihydrodiols formed in the metabolism of 2-OH-3MC may be further converted to potentially reactive 9,10-diol-7,8-epoxides and may contribute to the overall carcinogenicity exhibited by 3MC.  相似文献   

3.
Abstract

Seven selfcomplementary decamer oligodeoxyribonucleotides were reacted with (–)–anti–(11R,12S)–dihydrodiol (13S,14R)–epoxide of dibenzo[a,l]pyrene (DB[a,l]PDE). The oligodeoxyribonucleotides were postlabeled with 33P–ATP, digested to mononucleotides and the amount of adducts formed was determined by HPLC. We found that the nucleotide sequence affects the binding of DB[a,l]PDE to DNA. DB[a,l]PDE binds better to GC rich oligodeoxyribonucleotides than to AT rich oligodeoxyribonucleotides. The CGC sequence binds more DB[a,l]PDE than GGC, TGC, GAT or AGC sequences. The reactions were carried out on ice or at 37°C. There was no evidence of temperature effects on the amount of DB[a,l]PDE binding.  相似文献   

4.
Treatment of (13S,9Z,11E)-13-hydroperoxy-9,11-octadecadienoic acid (13S-HPODE) with strong alkali resulted in the formation of about 75% of the corresponding hydroxy acid, (13S,9Z,11E)-13-hydroxyl-9,11-octadecadienoic acid (13S-HPODE), and the remaining 25% of products was a mixture of several oxidized fatty acids, the majority of which was formed from (9Z,11R,S,12S,R)-13-oxo-11, 12-epoxy-9-octadecenoic acid by Favorskii rearrangement (Gardner, H.W.,et al. (1993)Lipids 28, 487–495). In the present work, isotope experiments were completed in order to get further information about the initial steps of the alkali-promoted decomposition of 13S-HPODE.1. Reaction of [hydroperoxy-18O2]13S-HPODE with 5 M KOH resulted in the formation of [hydroxy-18O]13S-HPODE and [epoxy-18O](9Z,11R,S,12S,R)-13-oxo-11, 12-epoxy-9-octadecenoic acid;2. treatment of a mixture of [U-14C]13S-HPODE and [hydroperoxy-18O2]13S-HPODE with KOH and analysis of the reaction product by radio-TLC showed that 13S-HPODE was stable under the reaction conditions and did not serve as precursor of other products;3. reaction of a mixture of [U-14C]13-oxo-9,11-octadecadienoic acid (13-OODE) and [hydroperoxy-18O2]13S-HPODE with KOH resulted in the formation of [U-14C-epoxy-18O](9Z,11R,S,12S,R)-13-oxo-11,12-epoxy-9-octadecenoic acid;4. treatment of a mixture of [hydroperoxy-18O2] 13S-HPODE and [carboxyl-18O1]13S-HPODE with KOH afforded (9Z,11R,S,12S,R)-13-oxo-11,12-epoxy-9-octadecenoic acid having an18O-labeling pattern which was in agreement with its formation by intermolecular epoxidation. It was concluded that (9Z,11R,S,12S,R)-13-oxo-11, 12-epoxy-9-octadecenoic acid is formed from 13S-HPODE by a sequence involving initial dehydration into the α,β-unsaturated ketone, 13-OODE, followed by epoxidation of the Δ11 double bond of this compound by the peroxyl anion of a second molecule of 13S-HPODE. Rapid conversion of hydroperoxides by alkali appreared to require the presence of an α,β-unsaturated ketone intermediate as an oxygen acceptor. This was supported by experiments with a saturated hydroperoxide, methyl 12-hydroperoxyoctadecanoate, which was found to be much more resistant to alkali-promoted conversion than 13S-HPODE.  相似文献   

5.
The {3-[bis(alkylthio)methylene]-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylidene}malononitriles ((1R,4S)- 2 , (1S,4R)- 2 and (1R,4S)- 3 ) were prepared starting from 1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylidenemalononitriles (1R, 4R)- 1 and (1S,4S)- 1 ) arisen from (+)-, (–)-camphor. The reaction of (1R,4S)- 2 with bromine yielded the (1S,8R)-8,11,11-trimethyl-3-methylthio-5-oxo-4-thiatricyclo-[6.2.1.02,7]undeca-2,6-diene-6-carbonitrile ( 8 ) after hydrolysis of the initially formed (1S,8R)-6-cyano-8,11,11-trimethyl-3-methylthio-4-thia-tricyclo[6.2.1.02,7]undeca-2,6-diene-5-iminium bromide ( 7 ).  相似文献   

6.
A water-soluble, foaming epoxyalkene sulfonate, sodium (+)-(12S,13R)-epoxy-cis-9-octadecenyl sulfonate, was synthesized from vernonia oil (VO) by a series of simple reactions that include transesterification, metal hydride reduction, tosylation, and SN2 reactions. Conversion of VO into vernonia oil methyl esters (VOME) using sodium methoxide was quantitative. Subsequent reduction of VOME with lithium aluminum hydride yielded (+)-(12S,13R)-epoxy-cis-9-octadecenol (94%), along with minor amounts of hexadecenol, octadecenol, cis-9-octadecenol, and cis-9,12-octadecandienol. The (+)-(12S,13R)-epoxy-cis-9-octadecenol, was tosylated with p-toluenesulfonyl chloride to give (+)-(12S,13R)-epoxy-cis-9-octadecenyl tosylate at 96% yield. Iodination of the tosylate with sodium iodide and subsequent SN2 reaction with sodium sulfite afforded (+)-(12S,13R)-epoxy-cis-9-octadecenyl sulfonate (63% yield). This study demonstrates the ability to produce an epoxyalkenyl sulfonate, belonging to a class of anionic surfactants, from VO without destroying the epoxy functionality in the (+)-(12S,13R)-epoxy-cis-9-octadecenyl moiety of VO. The critical micelle concentration of the synthesized sulfonate was also determined.  相似文献   

7.
Adducts derived from the binding of the (+)-7R,8S,9S,10R and (?)-7S,8R,9R,10S enantiomers of r7,t8-dihydrodiol-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE) to 2′-deoxyguanosine residues in DNA are known to induce mutations due to error-prone DNA replication. Because the conformational properties of these lesions may be important in these phenomena, we have examined the effects of the stereoisomeric (+)- and (?)-trans-anti-[BP]-N 2-dG lesions positioned site-specifically at or near primer/template oligonucleotide junctions on DNA bending using high resolution gel electrophoresis. Remarkable differences in electrophoretic mobilities μ are observed in the two adducts derived from the tumorigenic (+)-anti-BPDE, and the non-tumorigenic (?)-anti-BPDE enantiomer. With the (+)-trans lesion positioned on the template strand adjacent to the 3′-end of the primer strand, a remarkable decrease in μ is observed. This suggests the existence of a bend at the single strand-double strand junction. Only modest decreases in μ are observed in the case of the (?)-trans lesion, or when the 3′-end is opposite to, or more distant from the lesion site. These observations are discussed in terms of the known NMR solution structures of these lesions in the same sequence context, and the properties of primer/template DNA in polymerases.  相似文献   

8.
(11bR,11′bR)‐4,4′‐(1,2‐Phenylene)bis[4,5‐dihydro‐3H‐dinaphtho[2,1‐c:1′,2′‐e]phosphepin] [abbreviated as (R)‐BINAPHANE], (3R,3′R,4S,4′S,11bS,11′bS)‐4,4′‐bis(1,1‐dimethylethyl)‐4,4′,5,5′‐tetrahydro‐3,3′‐bi‐3H‐dinaphtho[2,1‐c:1′,2′‐e]phosphepin [(S)‐BINAPINE], (1S,1′S,2R,2′R)‐1,1′‐bis(1,1‐dimethylethyl)‐2,2′‐biphospholane [(S,S,R,R)‐TANGPHOS] and (2R,2′R,5R,5′R)‐1,1′‐(1,2‐phenylene)bis[2,5‐bis(1‐methylethyl)phospholane] [(R,R)‐i‐Pr‐DUPHOS] are C2‐bridged chiral diphosphines that form stable complexes with palladium(II) and platinum(II) containing a five‐membered chelate ring. The Pd(II)‐BINAPHANE catalyst displayed good to excellent enantioselectivities with ee values as high as 99.0% albeit in low yields for the carbonyl‐ene reaction between phenylglyoxal and alkenes. Its Pt(II) counterpart afforded improved yields while retaining satisfactory enantioselectivity. For the carbonyl‐ene reaction between ethyl trifluoropyruvate and alkenes, the Pd(II)‐BINAPHANE catalyst afforded both good yields and extremely high enantioselectivities with ees as high as 99.6%. A comparative study on the Pd(II) catalysts of the four C2‐bridged chiral diphosphines revealed that Pd(II)‐BINAPHANE afforded the best enantioselectivity. The ee values derived from Pd(II)‐BINAPHANE are much higher than those derived from the other three Pd(II) catalysts. A comparison of the catalyst structures shows that the Pd(II)‐BINAPHANE catalyst is the only one that has two bulky (R)‐binaphthyl groups close to the reaction site. Hence it creates a deep chiral space that can efficiently control the reaction behavior in the carbonyl‐ene reactions resulting in excellent enantioselectivity.  相似文献   

9.
Ernst H. Oliw  Mats Hamberg 《Lipids》2019,54(9):543-556
Fusarium oxysporum f. sp. tulipae (FOT) secretes (+)-7-iso-jasmonoyl-(S)-isoleucine ((+)-JA-Ile) to the growth medium together with about 10 times less 9,10-dihydro-(+)-7-iso-JA-Ile. Plants and fungi form (+)-JA-Ile from 18:3n-3 via 12-oxophytodienoic acid (12-OPDA), which is formed sequentially by 13S-lipoxygenase, allene oxide synthase (AOS), and allene oxide cyclase (AOC). Plant AOC does not accept linoleic acid (18:2n-6)-derived allene oxides and dihydrojasmonates are not commonly found in plants. This raises the question whether 18:2n-6 serves as the precursor of 9,10-dihydro-JA-Ile in Fusarium, or whether the latter arises by a putative reductase activity operating on the n-3 double bond of (+)-JA-Ile or one of its precursors. Incubation of pentadeuterated (d5) 18:3n-3 with mycelia led to the formation of d5-(+)-JA-Ile whereas d5-9,10-dihydro-JA-Ile was not detectable. In contrast, d5-9,10-dihydro-(+)-JA-Ile was produced following incubation of [17,17,18,18,18-2H5]linoleic acid (d5-18:2n-6). Furthermore, 9(S),13(S)-12-oxophytoenoic acid, the 15,16-dihydro analog of 12-OPDA, was formed upon incubation of unlabeled or d5-18:2n-6. Appearance of the α-ketol, 12-oxo-13-hydroxy-9-octadecenoic acid following incubation of unlabeled or [13C18]-labeled 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid confirmed the involvement of AOS and the biosynthesis of the allene oxide 12,13(S)-epoxy-9,11-octadecadienoic acid. The lack of conversion of this allene oxide by AOC in higher plants necessitates the conclusion that the fungal AOC is distinct from the corresponding plant enzyme.  相似文献   

10.
The sex pheromone of the pea midge consists of 2-acetoxytridecane, (2S,11S)-diacetoxytridecane and (2S,12S)-diacetoxytridecane. The responses of male pea midges to the corresponding stereoisomers of (2S,11S)-diacetoxytridecane and (2S,12S)-diacetoxytridecane were tested in field trapping experiments and by electroantennographic recordings. When added at 20% of the pheromone component to the sex pheromone blend, the (2S,11R)- and (2R,11S)-stereoisomers of (2S,11S)-diacetoxytridecane, were shown to have a strong inhibitory effect on male attraction in the field. At the same dose, (2R,11R)-diacetoxytridecane, (2R,12R)-diacetoxytridecane, and meso-2,12-diacetoxytridecane, did not have a significant effect on male behavior. It was also shown that substitution of either (2S,11S)-diacetoxytridecane or (2S,12S)-diacetoxytridecane with the related stereoisomers reduced trap catches to the level of blank traps. The electroantennographic recordings showed similar dose–response curves for the pheromone components and the stereoisomers shown to have an inhibitory effect. It seems likely that male antennae have receptors for both pheromone components and for inhibitory stereoisomers. Scanning electron microscopy and transmission electron microscopy of the antennae revealed three types of sensilla involved in chemoreception: sensilla circumfila, sensilla trichodea, and sensilla coeloconica. The sensilla circumfila and trichodea are both innervated by two sensory cells, whereas the sensilla coeloconica are innervated by four to five cells.  相似文献   

11.
A new rapid, one-step semi-quantitative HPLC-MS method applicable for the separation and characterization of the group of total 10 BaP hydroxyderivatives (1-hydroxy benzo[a]pyrene, 2-hydroxybenzo[a]pyrene, 3-hydroxybenzo[a]pyrene, 4-hydroxybenzo [a]pyrene, 7-hydroxybenzo[a]pyrene, 8-hydroxybenzo[a]pyrene, 9-hydroxybenzo[a]py rene, 10-hydroxybenzo[a]pyrene, 12-hydroxybenzo[a]pyrene and benzo[a]pyrene-9,10-dihydrodiol) was developed, involving electrospray ionization technique (ESI) in positive mode. Its qualitative and quantitative characteristics were selected by the analysis of the model OH-BaP mixture consisted of compounds mentioned above. The model system offered the linear response in the whole concentration range used (50–1000 ng.mL?1) as well as the resolution sufficient for semi-quantitative purposes (RS > 0.5). Subsequently, the suitability of the developed method was tested on BaP decomposition products to be formed during photooxidation at λ = 365 nm. These analyses confirmed the applicability of the proposed method, succeeding in the identification of 5 BaP hydroxyderivatives formed upon the BaP photooxidation experiment.  相似文献   

12.
The chiral (1R,2S)-(−)-2-amino-1,2-diphenylethanol and (1S,2R)-(+)-2-amino-1,2-diphenylethanol had been immobilized on the layered frame of zirconium phosphate to obtain zirconium phosphonates (1R,2S)-(−)-4a and (1S,2R)-(+)-4b. The enantioselective addition of Et2Zn to benzaldehyde using zirconium phosphonates (1R,2S)-(−)-4a and (1S,2R)-(+)-4b as heterogeneous catalysts yielded secondary alcohol in 80.1% yield and e.e. values of up to 54.3%, which was only 7.6% e.e. lower than that using the corresponding ligands (1R,2S)-(−)-2a and (1S,2R)-(+)-2b as homogeneous catalysts. The zirconium phosphonates (1R,2S)-(−)-4a and (1S,2R)-(+)-4b were characterized by IR, SEM, XRD and TG analysis. SEM and XRD data showed that the catalysts (1S,2R)-(+)-4b and (1R,2S)-(−)-4a were in aggregate and mesopore structure with the same interlayer spacing 2.48 nm and pore diameter 5.6 nm.  相似文献   

13.
Mats Hamberg 《Lipids》1991,26(6):407-415
The methyl esters of 9S,10S,13R-trihydroxy-11E-octadecenoic acid, 9S,10R,13S-trihydroxy-11E-octadecenoic acid, and 9S,10R,13R-trihydroxy-11E-octadecenoic acid were prepared from 9S-hydroperoxy-10E,12Z-octadecadienoic acidvia the epoxy alcohols methyl 10R,11R-epoxy-9S-hydroxy-12Z-octadecenoate and methyl 10S,11S-epoxy-9S-hydroxy-12Z-octadecenoate. The trihydroxyesters, as well as four stereoisomeric methyl 9,12,13-trihydroxy-10E-octadecenoates earlier prepared [Hamberg, M.,Chem. Phys. Lipids 43, 55–67 (1987)], were characterized by thin-layer chromatography, gas-liquid chromatography, mass spectrometry, and by chemical degradation. Availability of these chemically defined trihydroxyoctadecenoates made it possible to design a method for regio- and stereochemical analysis of 9,10,13- and 9,12,13-trihydroxyoctadecenoic acids obtained from various sources. Application of the method revealed that the mixture of 9,10,13- and 9,12,13-trihydroxyoctadecenoic acids formed during autoxidation of linoleic acid in aqueous medium contained comparable amounts of the sixteen possible regio- and stereoisomers. Furthermore, hydrolysis of the allylic epoxy alcohol, methyl 9S,10R-epoxy-13S-hydroxy-11E-octadecenoate, yielded a major trihydroxyoctadecenoate,i.e., methyl 9S,10S,13S-trihydroxyl-11E-octadecenoate, together with smaller amounts of methyl 9S,10R,13S-trihydroxy-11E-octadecenoate, methyl 9S,12R,13S-trihydroxy-10E-octadecenoate, and methyl 9S,12S,13S-trihydroxy-10E-octadecenoate.  相似文献   

14.
In the presence of Na2CO3 (1S,3S)‐ and (1R,3S)‐1‐(2,2‐dimethoxyethyl)‐2‐(1,3‐dioxobutyl)‐3‐(1,3‐dioxo‐butyl)oxymethyl‐1,2,3,4‐tetrahydrocarboline ( 1 ) were transformed into (1S,3S)‐ and (1R,3S)‐1‐(2,2‐dimethoxyethyl)‐2‐(1,3‐dioxobutyl)‐3‐hydroxymethyl‐1,2,3,4‐tetrahydrocarboline ( 2 ), which were cyclized to (6S)‐3‐acetyl‐6‐hydroxymethyl‐4,6,7,12‐tetrahydro‐4‐oxoindolo[2,3‐a]quinolizine ( 4 ), via(6S,12bS)‐ and (6S,12bR)‐3‐acetyl‐2‐hydroxyl‐6‐hydroxymethyl‐1,2,3,4,6,7,12,12b‐octahydro‐4‐oxoindolo[2,3‐a]quinoline ( 3 ). (6S)‐ 4 was coupled with Boc‐Gly, Boc‐L‐Asp(β‐benzyl ester), or Boc‐L‐Gln to give 6‐amino acid substituted (6S)‐3‐acetyl‐4,6,7,12‐tetrahydro‐4‐oxoindolo[2,3‐a]quinolizines 5a , 5b , or 5c , respectively. After the removal of Boc from (6S)‐ 5a (6S)‐3‐acetyl‐6‐glycyl‐4,6,7,12‐tetrahydro‐4‐oxoindolo[2,3‐a]quinolizine ( 6 ) was obtained. The anticancer activities of (6S)‐ 5 and (6S)‐ 6 in vitro were tested.  相似文献   

15.
Racemic cis‐10‐azatetracyclo[7.2.0.12,6.14,8]tridecan‐11‐one was prepared from homoadamant‐4‐ene by chlorosulfonyl isocyanate addition. The transformation of the β‐lactam to the corresponding β‐amino ester followed by Candida antarctica lipase A‐catalyzed enantioselective (E>>200) N‐acylation with 2,2,2‐trifluoroethyl butanoate afforded methyl (1R,4R,5S,8S)‐5‐aminotricyclo[4.3.1.13,8]undecane‐4‐carboxylate and the (1S,4S,5R,8R)‐butanamide with>99% ee at 50% conversion. Alternatively, transformation of the β‐lactam to the corresponding N‐hydroxymethyl‐β‐lactam and the following Pseudomonas cepacia (currently Burkholderia cepacia) lipase‐catalyzed enantioseletive O‐acylation provided the (1S,4S,6R,9R)‐alcohol (ee=87%) and the corresponding (1R,4R,6S,9S)‐butanoate (ee>99%). In the latter method, competition for the enzyme between the (1R,4R,6S,9S)‐butanoate, 2,2,2‐trifluoroethyl butanoate and the hydrolysis product, butanoic acid, tended to stop the reaction at about 45% conversion and finally gave racemization in the (1S,4S,6R,9R)‐alcohol with time.  相似文献   

16.
Like other PAHs, chrysenes are thought to exert their carcinogenicity via metabolic activation of proximally carcinogenic dihydrodiols to diol epoxides as ultimate carcinogens. Benzo[c] chrysene (B[c]C) is structurally intriguing among the PAH because it features both a bay region and a fjord region. Although B[c]C is carcinogenic and mutagenic, few data are available on its metabolic activation or the nature of its metabolites.

We have synthesized the B[c]C trans-1,2-, 7,8-, and 9,10-dihydrodiols from the appropriate methoxy-substituted bisnaphthyl olefins by photochemical cyclization. B[c]C was metabolized with S9 liver fraction from phenobarbital/β-naphthoflavone-treated rats. Dihydrodiols were formed on both terminal rings as well as in the K-region. 2-, 3-, and 10-HydroxyB[c]C were also identified as metabolites. In mutagenicity studies toward S. typhimurium TA100, 1,2-dihydrodiol was more mutagenic than B[c]C at doses above 1.25 μg/plate, whereas 9,10-dihydrodiol was toxic at doses above 1.25 μg/plate.  相似文献   

17.
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid, produced by bacteria by means of oxidation and biohydrogenation of the chlorophyll side chain phytol (3,7R,11R,15-tetramethylhexadec-2-en-1-ol). The later reaction generates to a new stereogenic center on C-3 which can be both 3R- or 3S-configured. Thus, two diastereomers (3S,7R,11R,15- and 3R,7R,11R,15-phytanic acid) are naturally produced. In this study we examined the diastereomer composition of phytanic acid in terrestrial and marine food samples. Phytanic acid was transferred into its methyl ester which was analyzed by GC/MS in the selected ion monitoring mode. The first eluted diastereomer in the samples was tentatively identified as 3S,7R,11R,15-phytanic acid. The marine samples were clearly dominated by 3S,7R,11R,15-phytanic acid whose abundance was higher in marine mammals than in fish. Milk from one organic cow collected over a period of 30 days showed lower proportions of 3S,7R,11R,15-phytanic acid than milk from one cow raised with conventional feed. The difference between organic and conventional dairy products (cheese and butter) was not as pronounced as in milk. Milk samples from other mammals (goat, sheep, mare, camel, moose, and human) also showed an excess of 3S,7R,11R,15-phytanic acid except for camel and moose milk.  相似文献   

18.
The effect of pulegone chiral center configuration on its antifeedant activity to Myzus persicae was examined. Biological consequences of structural modifications of (R)-(+)- and (S)-(−)-pulegone, the lactonization, iodolactonization, and incorporation of hydroxyl and carbonyl groups were studied, as well. The most active compounds were (R)-(+)-pulegone (1a) and δ-hydroxy-γ-spirolactones (5S,6R,8S)-(−)-6-hydroxy-4,4,8-trimethyl-1-oxaspiro[4.5]decan-2-one (5b) and (5R,6S,8S)-6-hydroxy-4,4,8-trimethyl-1-oxaspiro[4.5]decan-2-one (6b) derived from (S)-(−)-pulegone (1b). The compounds deterred aphid probing and feeding at preingestional, ingestional, and postingestional phases of feeding. The preingestional effect of (R)-(+)-pulegone (1a) was manifested as difficulty in finding and reaching the phloem (i.e., prolonged time preceding the first contact with phloem vessels), a high proportion of probes not reaching beyond the mesophyll layer before first phloem phase, and/or failure to find sieve elements by 20% of aphids during the 8-hr experiment. The ingestional activity of (R)-(+)-pulegone (1a) and hydroxylactones 5b and 6b resulted in a decrease in duration of phloem sap ingestion, a decrease in the proportion of aphids with sustained sap ingestion, and an increase in the proportion of aphid salivation in phloem. δ-Keto-γ-spirolactone (5R,8S)-(−)-4,4,8-trimethyl-1-oxaspiro[4.5]decan-2,6-dione (8b) produced a weak ingestional effect (shortened phloem phase). The postingestional deterrence of (R)-(+)-pulegone (1a) and δ-hydroxy-γ-spirolactones (5R,6S,8R)-(+)-6-hydroxy-4,4,8-trimethyl-1-oxaspiro[4.5]-decan-2-one (5a), 5b, (5S,6R,8R)-6-hydroxy-4,4,8-trimethyl-1-oxaspiro[4.5]decan-2-one (6a), 6b, and δ-keto-γ-spirolactone 8b prevented aphids from settling on treated leaves. The trans position of methyl group CH3–8 and the bond C5–O1 in lactone 6b appeared to weaken the deterrent activity in relation to the cis diastereoisomer (5b).  相似文献   

19.
Oliw EH  Cristea M  Hamberg M 《Lipids》2004,39(4):319-323
Manganese lipoxygenase (Mn-LO) oxygenates linoleic acid (LA) to a mixture of the hydroperoxides—11(S)-hydroperoxy-9Z,12Z-octadecadienoic acid [11(S)-HPODE] and 13(R)-hydroperoxy-9Z,11E-octadecadienoic acid [13(R)-HPODE]- and also catalyzes the conversion of 11(S)-HPODE to 13(R)-HPODE via oxygen-centered (LOO•) and carbon-centered (L•) radicals [Hamberg, M., Su, C., and Oliw, E. (1998) Manganese Lipoxygenase. Discovery of a Bis-allylic Hydroperoxide as Product and Intermediate in a Lipoxygenase Reaction, J. Biol. Chem. 273, 13080–13088]. The aims of the present work were to investigate whether 11-HPODE can also be produced by iron-dependent lipoxygenases and to determine the enzymatic transformations of stereoisomers of 11-HPODE by lipoxygenases. Rice leaf pathogen-inducible lipoxygenase, but not soybean lipoxygenase-1 (sLO-1), generated a low level of 11-HPODE (0.4%) besides its main hydroperoxide, 13(S)-HPODE, on incubation with LA. Steric analysis revealed that 11-HPODE was enriched with respect to the R enantiomer [74% 11(R)]. In agreement with previous results, 11(S)-HPODE incubated with Mn-LO provided 13(R)-HPODE, and the same conversion also took place with the methyl ester of 11(S)-HPODE. 11(R,S)-HPODE was metabolized biphasically in the presence of Mn-LO, i.e., by a rapid phase during which the 11(S)-enantiomer was converted into 13(R)-HPODE and a slow phase during which the 11(R)-enantiomer was converted into 9(R)-HPODE. sLO-1 catalyzed a slow conversion of 11(S)-HPODE into a mixture of 13(R)-HPODE (75%), 9(S)-HPODE (10%), and 13(S)-HPODE (10%), whereas 11(R,S)-HPODE produced a mixture of nearly racemic 13-HPODE (≈70%) and 9-HPODE (≈30%). The results showed that 11-HPODE can also be produced by an iron-dependent LO and suggested that the previously established mechanism of isomerization of 11(S)-HPODE involving suprafacial migration of O2 is valid also for the isomerizations of 11(R)-HPODE by Mn-LO and of 11(S)-HPODE by sLO-1.  相似文献   

20.
In this study, we have prepared poly([R,S ]-β-hydroxybutyrate) (P([R,S ]-β-HB) or PHB) from [R ,S]-β-butyrolactone ([ R,S]-β-BL), using different aluminoxane catalyst systems (triethylaluminium/water, triisobutylaluminium/water, trioctylaluminium/water and tetraisobutyldialuminoxane/water). By varying the ratio of catalyst to water and using a method of fractionation of polymers, PHB with different isotactic diad fractions (i) (from 0.41 to 0.72) and crystallinities were obtained. Copolymers poly(butyrolactone-co-caprolactone) (P(BL-co-CL)) and poly(butyrolactone-co-valerolactone) (P(BL-co-VL)) have also been synthesized from the ring-opening copolymerization of [ R,S]-β-BL with either ε-caprolactone (CL) or δ-valerolactone (VL) using tetraisobutyldialuminoxane (TIBAO) catalyst. The enzymatic degradability of these polymers was studied in aerobic and anaerobic media. The objective of this work was to determine the influence of the tacticity and crystallinity of the polymers on their degree of biodegradation and on their initial degradation rate. It was shown that the degradation rate measured for bacterial PHB 100% [R] was the highest and the degree of aerobic biodegradation reached after 36 days was around 94%. A 40–50% biodegradation was obtained for synthetic PHB, highly isotactic and predominantly syndiotactic. The non-crystalline and atactic PHB synthesized from TIBAO catalyst had a very high degree of biodegradation of around 88%. This result may suggest that not only are the [R ]-BL units hydrolysed but also the [S ]-BL units. The influence of the crystallinity on the initial degradation rate was observed for the copolymers P(BL-co-CL) and P(BL-co -VL) of various feed ratios. All these copolymers synthesized from TIBAO catalyst, exhibit a high degree of biodegradation of around 85% except for copolymers containing a very high portion of unsubstituted units, CL or VL. The anaerobic biodegradation of PHB and copolymers P(BL-co -CL) is much lower than the aerobic biodegradation, as are the initial rates, even for bacterial P([R ]-HB). © 1999 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号