首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氯化锌活化法制备棉花秸秆活性炭的研究   总被引:7,自引:0,他引:7  
以棉花秸秆为原料,采用氯化锌活化法在不同操作条件下制备活性炭,通过检测活性炭样品的比表面积、亚甲基蓝吸附值和碘吸附值,探讨了浸渍比(氯化锌与原料的质量比)、活化时间和活化温度等操作条件对活性炭样品性能的影响。实验结果表明,在实验条件范围内,氯化锌活化法制备棉花秸秆活性炭适宜的操作条件如下:浸渍比为1.5:1,活化温度为550℃左右,活化时间为90 min,在较优条件下制得活性炭的比表面积可达1 403 m2/g,碘吸附值可达1 188 mg/g,亚甲基蓝吸附值可达238 mg/g。  相似文献   

2.
以生物质杉木屑为原料、四氧化三铁为磁性添加剂、十六烷基三甲基氯化铵和聚氧乙烯月桂醚为复配表面活性剂,采用真空裂解技术,制备了杉木屑基磁性活性炭。考察了体系压力、活化温度、磁性剂质量分数和活化时间对磁性活性炭的碘吸附值、亚甲基蓝吸附值和磁性能的影响。单一因素变量试验结果表明:磁性活性炭对碘和亚甲基蓝的吸附值随着各体系压力、活化温度和活化时间的增加而呈现出先增大后减小的变化规律性,而随着磁性剂添加质量分数的增加而降低。综合考虑各因素,确定其最优制备条件为体系压力10k Pa、活化温度450℃、磁性剂的质量分数10%和保温时间60 min,此条件下制备的磁性活性炭对碘和亚甲基蓝的吸附值分别为935 mg·g~(-1)和315 mg·g~(-1),磁性活性炭的饱和磁化强度为8.24 emu·g~(-1),满足中等强度磁场磁选回收活性炭的要求。  相似文献   

3.
以农业废料棉花秸秆作为原料,采用化学活化法,氯化锌为活化剂制备高效的生物质活性炭。研究了浸渍比、活化剂浓度、活化温度、活化时间4个工艺参数对制备活性炭的得率及吸附碘值的影响。找到其最佳制备条件:浸渍比为4∶14(g·mL~(-1)),氯化锌浓度为3mol·L~(-1),活化时间为500℃,活化时间为100min,在此条件下制得的活性炭其吸附碘值为1 050mg·g~(-1),得率为53%,比表面积为1 383.7m2·g~(-1),总孔容积为0.766cm3·g~(-1),平均孔半径为1.1nm。考察活性炭在吸附时间、投加量、pH条件下对亚甲基蓝的吸附量,初始浓度为50mg·L~(-1)的亚甲基蓝,活性炭吸附量达到49.4mg·g~(-1),吸附等温线可以用Langmuir模型描述。  相似文献   

4.
以福州市大学城污水处理厂污泥为主要原料,采用氯化锌活化一管式炉热解法制备污泥基活性炭。结果表明,氯化锌化学活化一管式炉热解法制备污泥活性炭的最佳工艺参数为:以亚甲基蓝吸附值和得率作为控制指标,综合考虑所得最佳水平组合为活化剂浓度为3mol/L、热解温度为550℃、热解时间为2h、液固比为1.5:1,所得活性炭的亚甲基蓝吸附值为41.9mg/g,得率为48.9%。并在此基础上,表征、分析了污泥、污泥活性炭和商品活性炭的微观形貌、比表面积、浸出重金属含量。  相似文献   

5.
以中间相炭微球为原料,KOH为活化剂,采用微波加热与传统加热2种方法在不同条件下制备出高比表面积活性炭.研究表明:活性炭比表面积和孔容随着KOH/MCMB的增大先增大后减小,采用微波加热制得的活性炭具有较高的比表面积,KOH/MCMB较小时,比表面积和孔容随活化时间的延长达到最大值后不再发生变化,在KOH/MCMB较大时,比表面积和孔容随活化时间的延长先增大后减小,采用微波加热可大大缩短活化时间,通过FTIR分析,微波加热比传统加热所制得的活性炭具有较低浓度的含氧基团.  相似文献   

6.
壳聚糖改性膨润土对酸性红吸附性能的研究   总被引:1,自引:0,他引:1  
探索壳聚糖与膨润土的质量比与反应介质酸度对制备壳聚糖改性膨润土的影响并以改性土为吸附剂探讨了改性土质量、吸附温度、吸附时间、介质的pH值及酸性红溶液质量浓度对酸性红吸附性能的影响.结果表明:制备的改性土随着壳聚糖质量的增加吸附量先增大后减小、随着反应介质的酸度增强,改性土的吸附能力增加;随着改性土质量的增加吸附量先增大后减小;随着反应温度上升改性土吸附能力先增大后减小;随着酸性红染料质量浓度的增加吸附能力增加;随着反应pH值的增大吸附能力先增大后减少.质量比为1:125,冰醋酸体积分数为1%为最佳制备条件,改性土质量为0.6g,温度温度为25℃,吸附时间为70min,介质pH为7左右时是最佳吸附条件.且其吸附行为满足Langmuir等温式.  相似文献   

7.
用磷酸活化法制备甘蔗渣活性炭及其吸附性能研究   总被引:1,自引:0,他引:1  
以甘蔗渣为原料,在不同操作条件下制备得到活性炭,测定了相应的活性炭对亚甲基蓝脱色的吸附值,并研究了亚甲基蓝吸附值与活化剂浓度、活化时间和活化温度之间的关系.实验结果表明,浸渍剂浓度是用磷酸活化法制备活性炭的最重要的影响因素;在磷酸浓度为40 wt%,活化时间为12 h,活化温度为500℃时,甘蔗渣活性炭的吸附能力最高,亚甲基蓝的吸附量达到294.866 mg/g.  相似文献   

8.
为制备一种吸附性能优良的活性炭,以棕榈叶鞘纤维(棕榈纤维)为原料,研究了氢氧化钾活化制备棕榈叶鞘纤维基活性炭(PFAC)的实验工艺条件,分析了活化质量比、活化温度、活化时间等因素对活性炭吸附性能的影响,利用亚甲基蓝(200 mg/L)作为吸附质表征了PFAC的吸附性能.结果表明,随着活化质量比的增加,PFAC吸附亚甲基蓝的量先增加后减少;活化温度和活化时间对PFAC吸附性能的影响与活化质量比有相似的变化趋势;活化温度和时间对PFAC吸附亚甲基蓝的性能影响显著,当活化时间为2.0 h、活化质量比为1∶1、活化温度为800℃时,其吸附量可达199.263 mg/g.  相似文献   

9.
污泥活性炭的制备、结构表征及吸附特性   总被引:3,自引:0,他引:3  
以城市污水厂污泥为原料,氯化锌为制孔剂,加入适当添加剂制备污泥活性炭,借助吸附等温线和BET、FT-IR、SEM等现代分析测试方法,表征其结构和吸附特性.结果表明:活化温度600℃、活化时间30 min、ZnCl2浓度50%、原料粒度20~24目时制备的污泥活性炭,其碘吸附值为643.0~815.6 mg/g,最可几孔径分布在4.16 nm左右,具有介空结构;平均孔容为0.4484~0.5122 mL/g,比表面积为634.8~748 m2/g,IR峰中C=C、C—H、N=O、C—OH是活性炭表面功能组.污泥活性炭对苯酚的吸附以多层吸附和毛细孔凝聚为主,微孔填满后达饱和,24 h饱和吸附量为15 mg/g.  相似文献   

10.
以芝麻秆为原料,通过磷酸活化法和酸性改性法制备活性炭,对产品的比表面积、孔结构和碘吸附值进行表征,通过单因素实验研究芝麻秆活性炭处理含铜离子废水的工艺,同时研究了活性炭吸附铜离子的吸附动力学.制得的活性炭比表面积为455m~2/g,总孔体积为0.65mL/g,平均孔径为3.63nm,碘吸附值为887mg/g.用活性炭处理100mL质量浓度为20mg/L的铜离子溶液时,处理温度为30℃,pH值为6,活性炭用量为0.08g,50min后吸附达到平衡,活性炭去除铜离子的效果最佳,吸附率达77%.活性炭对铜离子的吸附行为遵循准二级动力学规律.  相似文献   

11.
以制药厂废水处理污泥和污水处理厂污泥为原料,以氯化锌为活化剂,实验室制备了污泥活性炭,研究了活化剂浓度、固液比、活化温度及活化时间等因素对污泥活性炭的影响。通过正交实验,确定了最佳工艺参数。结果表明,采用氯化锌为活化剂,其浓度为40%,活化时间为20 min,活化温度为500℃,固液比为1∶3时制得活性炭的吸附效果最佳。  相似文献   

12.
吸附汽油蒸气活性炭的制备研究   总被引:1,自引:1,他引:1  
以市售活性炭和炭化料为原料,NH4NO3和K2CO3混合物为复合添加剂,水蒸汽活化法制备了汽油蒸气吸附用活性炭.通过测定活性炭的丁烷工作容量(BWC)、碘吸附值和氮吸附等温线,研究了活性炭制备条件特别是添加剂对丁烷工作容量和孔隙结构的影响.结果表明,制备条件对BWC的影响顺序依次为活化温度、添加剂用量和活化时间;较高的活化温度和较大的添加剂量均促进了活性炭中孔的发育;活性炭的BWC与中孔孔容呈明显正相关性,同时受微孔表面积和总孔容影响也较大;活性炭吸附丁烷后的首次解吸率在60%左右,循环解吸率达95%以上.  相似文献   

13.
污泥活性炭的制备及其在焦化废水中的应用   总被引:2,自引:0,他引:2  
研究了以城市污水厂脱水污泥为原料,氯化锌为活化剂的污泥活性炭制备工艺及其在焦化废水中的应用。在活化温度为550℃、活化剂浓度为5mol/L、固液比1:2及活化时间40min条件下,制备得到的活性炭亚甲基蓝吸附值为145.35mg/g,BET比表面积值为297.36m^2/g。将制备的污泥活性炭产品应用于焦化废水中,实验结果表明:污泥活性炭的最佳投加量为3g/L,室温下。吸附时间360min,脱色率和COD去除率分别可达到96.55%与82.95%。  相似文献   

14.
以椰壳炭为原料,水为活化剂,利用同步热重/差热分析仪(TG/DTA)对椰壳炭活化的机理、反应热效应以及微波辐照对微波椰壳活性炭制备的影响进行了探讨。结果表明:在40℃/min升温条件下,不同的椰壳炭都有一个吸热脱水失重阶段。浸渍后失重速率、活化点以及相应放热温度区间也随着增加。椰壳炭浸渍时间为48 h,在390~998℃失重达到32.048%,放热温度区间为153.62~855℃,放热效应有利于水蒸气与炭在800~900℃高温下的吸热活化反应,同时微波辐照能使水-椰壳炭迅速达到活化反应温度。当活化时间为3~5 min,水蒸气流量为3.5~5.5 mL/min时,微波椰壳活性炭的碘吸附值达到1 031 mg/g,亚甲基蓝吸附值达到10mL.0.1/g。研究结果为微波椰壳活性炭的制备提供了理论依据。  相似文献   

15.
城市污水厂污泥制备吸附剂实验研究   总被引:1,自引:0,他引:1  
基于城市污水污泥中含有机物的特点,研究了以其为原料制备吸附剂的工艺条件,探讨了活化温度、活化时间等因素对制备吸附剂性能及产率的影响规律,结合扫描电镜表征分析,考察了吸附剂作为水处理吸附剂的去除效果。结果表明,以氯化锌为活化剂制备吸附剂的最佳工艺条件为:活化温度550℃、活化剂浓度3mol/L、固液比1∶2、活化时间1h,吸附碘值在410mg/g以上,比表面积为227.3m2/g,得率为38.32%。将该产品用于处理重金属废水,投加量为0.5g,吸附平衡时间为60min时,对Cu2+的吸附量达到18mg/g,其效果优于商用粉末活性炭。  相似文献   

16.
用花生壳制备活性炭的研究   总被引:9,自引:0,他引:9  
研究了花生壳活性炭的制备方法.采用正交实验设计比较了磷酸、氯化锌、氢氧化钾、硫酸4种活化剂以及活化温度、活化时间、活化剂浓度、液固比等各因素对花生壳活性炭性能的影响,并用亚甲基蓝的吸附值和比表面积对所得样品进行了表征.实验结果表明,磷酸活化法所得的活性炭性能最好,采用50%磷酸,液固比2:1处理花生壳,在350~400℃活化4 h,活性炭的亚甲基蓝吸附值可达15.0 mL,比表面积为772.792 m2/g,活性炭产率45%~48%.  相似文献   

17.
以酚醛树脂为原料、氢氧化钾为活化剂,经过一系列的单因素实验,分别考察了活化温度、碱脂比及活化时间对碘吸附值和活性炭收率的影响。结果表明:当活化温度为800?C、碱脂比为2:1、活化时间为90 min时,制备的活性炭样品的碘吸附值和活性炭收率分别为1 531.72 mg/g和73.90%。采用热重-差热分析仪(TG-DTA)、电子显微镜(SEM)、傅里叶红外光谱仪(FTIR)、X射线衍射仪(XRD)等仪器,分别对活性炭样品的炭化活化过程、表面形态、表面官能团、物相结构进行了表征。  相似文献   

18.
对以脱硅稻壳为原料、Na OH和Na2CO3为混合活化剂制备活性炭的工艺进行了4因素(活化温度、活化时间、活化剂混合比、浸渍液质量分数)3水平的响应面优化研究.结果显示:活化温度和浸渍液质量分数对活性炭的碘吸附值有显著地影响.在活化温度635℃,活化时间35 min,混合比4∶1,浸渍液质量分数40%时碘吸附值出现极值,验证实验的碘平均值为1 383.5 mg/g,与预测值基本吻合.另外对所制活性炭进行了性能表征,采用SEM表征了活性炭的形貌,BET法计算了活性炭的比表面积,BJH方程计算出活性炭的孔径分布.得到其比表面积为1 566.1 m2/g,平均孔径为2.05 nm,总孔容为0.80 cm3/g.  相似文献   

19.
用于吸附分离CO2的活性炭研究   总被引:1,自引:2,他引:1  
以无烟煤为原料、NH4NO3和K2CO3混合物为添加剂制备了变压吸附分离CO2用活性炭.将煤粉、添加剂和煤焦油经过充分混合后挤压成条状,在600℃及无氧的条件下炭化30min,然后用水蒸气在900℃下活化一定时间得到活性炭.测定了活性炭的比表面积、微孔孔容、碘吸附值、四氯化碳吸附值、CO2吸附量、堆积密度等指标.结果表明,添加剂用量以2%~3%为宜,活化前对炭化料进行酸洗有利于提高活性炭的综合性能.实验的最佳结果出现在烧失率45%~50%或四氯化碳吸附值45%~55%左右,这时,活性炭的CO2吸附量和堆积密度分别达到70mL/g和600g/L左右.此外,CO2吸附量与微孔孔容之间呈正相关关系,而与比表面积、碘吸附值、四氯化碳吸附值等指标之间则没有很好的相关性.采用本方法制备出的活性炭已经成功应用于变压吸附法提纯氢气的工业装置,氢气的纯度达到99.999%.  相似文献   

20.
麦秸活性炭的制备及脱色性能   总被引:2,自引:0,他引:2  
在高温流化床反应器中以小麦秸秆为原料,采用二氧化碳活化法制备活性炭。研究了流化数、活化温度和活化时间等操作条件对活性炭吸附性能的影响,通过碘值、亚甲基蓝值和扫描电镜对活性炭进行了表征。确定了制备活性炭的优化工艺条件:流化数1.5、活化温度800℃、活化时间30 min。优化工艺条件下制得的活性炭碘值和亚甲基蓝吸附值分别高达800.71 mg.g-1和292.5 mg.g-1,具有较好的吸附性能;对染料废水吸附符合拟二级吸附动力学模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号