首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 731 毫秒
1.
A metallodendrimer-based electrochemical DNA biosensor was constructed by a layer-by-layer assembly of cobalt(II) salicylaldiimine metallodendrimer (SDD-Co(II)) and a 21 bases oligonucleotide NH2-5′-GAGGAGTTGGGGGAGCACATT-3′ (pDNA) on a gold electrode. The complementary oligonucleotide was 5′-AATGTGCTCCCCCAACTCCTC-3′ (tDNA). UV-visible spectra of SDD-Co(II) in 1:1 (v/v) acetone-ethanol solution showed absorption bands at 325 nm and 365-420 nm related to π-π* intra-dendrimer transitions and d-π* metal-dendrimer charge transfer transitions, respectively. Square-wave voltammetry (SWV) characterisation of the Au|SDD-Co(II)|pDNA biosensor system in phosphate buffer saline solution of pH 7.4, indicated a reversible one-electron electrochemical process with a formal potential, E°′, value of +210 mV. Electrochemical impedance spectroscopy (EIS) data confirmed that the hybridisation of the biosensor's pDNA with the tDNA to form double-stranded DNA (dsDNA) resulted in an increase of the impedimetric charge transfer resistance, Rct, value from 6.52 to 12.85 kΩ. The limit of detection (LOD), calculated as 3σ of the background noise, and sensitivity of the sensor were 1.29 kΩ/nmol L−1 and 0.34 pmol L−1, respectively.  相似文献   

2.
Stable Nafion-Au colloids were immobilized on a glassy carbon electrode (GCE) for detection of β-agonist clenbuterol by electroanalysis. The Au colloids were prepared by a one-step electrodeposition onto GCE, with obvious electrocatalytic activity present. The negatively charged Nafion film was an efficient barrier to negatively charged interfering compounds, resulting in accumulation of positively charged clenbuterol at the Nafion film. The electrochemical characters of the electrode during various modified steps in a redox probe system of K4[Fe(CN)6]/K3[Fe(CN)6] were confirmed by cyclic voltammetry (CV) and AC-impedance. In Britton-Robinson (B-R) buffer solution (pH = 2.0) and the potential range of −0.2 to 1.2 V, the Nafion-Au colloid modified electrode, compared to a bare GCE, exhibits obvious electrocatalytic activity towards the redox of clenbuterol by greatly enhancing the peak current with a linear calibration curve from 8.0 × 10−7 to 1.0 × 10−5 mol/L and a detection limit of (1.0 × 10−7 mol/L) (R = 0.996). The modified electrode shows high sensitivity, selectivity and reproducibility. The recovery for detecting clenbuterol (∼10−6 mol/L) in human serum is up to 98.19%.  相似文献   

3.
M. Reffass 《Electrochimica acta》2007,52(27):7599-7606
Pitting corrosion of carbon steel electrodes in 0.1 mol L−1 NaHCO3 + 0.02 mol L−1 NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with NO2 concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [NO2] = 0 up to 400 ± 50 mV/SCE for [NO2] = 0.1 mol L−1. During anodic polarisation at potentials comprised between Eb([NO2] = 0) and Eb([NO2] ≠ 0), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via scanning vibrating electrode technique (SVET). Addition of a NaNO2 solution after the beginning of the polarisation led to a rapid repassivation of pre-existing well-grown pits. In situ micro-Raman spectroscopy was then used to identify the corrosion products forming inside the pits. The first species to be detected in the presence of NO2 were mainly dissolved Fe(III) species, more likely [FeIII(H2O)6]3+ complexes. Iron(II) carbonate FeCO3, siderite, and carbonated green rust GR(CO32−) were also detected in the active pits, as in the absence of nitrite. But they were accompanied by maghemite γ-Fe2O3, a phase structurally similar to the passive film, that forms from the Fe(III) complexes. The Raman analyses then correlate with the SVET observations and confirm that the main effect of nitrite ions is to oxidize iron(II) into iron(III). The passive film would then form from the Fe(III) species still bound to the steel surface.  相似文献   

4.
M. Reffass 《Electrochimica acta》2009,54(18):4389-4396
Pitting corrosion of carbon steel electrodes in 0.1 M NaHCO3 + 0.02 M NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with the phosphate concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [HPO42−] = 0 to 180 ± 40 mV/SCE for [HPO42−] = 0.02 mol L−1. During anodic polarisation (E = 50 mV/SCE), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via the scanning vibrating electrode technique (SVET). The addition of a Na2HPO4 solution after the beginning of the polarisation did not lead to the repassivation of pre-existing well-grown pits. The corrosion products forming in the pits were identified in situ by micro-Raman spectroscopy. They depended on the phosphate concentration. For [HPO42−] = 0.004 mol L−1, siderite FeCO3 was detected first. It was oxidised later into carbonated green rust GR(CO32−) by dissolved O2. The beginning of the process is therefore similar to that observed in the absence of phosphate. Finally, GR(CO32−) was oxidised into ferrihydrite, the most poorly ordered form of Fe(III) oxides and oxyhydroxides. Phosphate species, adsorbing on the nuclei of FeOOH, inhibited their growth and crystallisation. For [HPO42−] = 0.02 mol L−1, siderite was accompanied by an amorphous precursor of vivianite, Fe2(PO4)3·8H2O. This shows that, in any case, phosphate species interact strongly with the iron species produced by the dissolution of steel.  相似文献   

5.
Electrochemical activity, morphology and surface electrical conductivity of Boron-Doped Polycrystalline Diamond films prepared by MPCVD have been investigated. Heterogeneous apparent rate constants of three different redox systems, [Fe(CN)6]3−/4−, [IrCl6]2−/3− and [Ru(NH3)6]3+/2+ have been measured by both Cyclic Voltammetry and Electrochemical Impedance Spectroscopy on < 100 > textured films with a predominance of (111) faces: first measurements have been done with [Fe(CN)6]3−/4− only on as grown samples, and secondly after a mild electrochemical pretreatment the three redox systems have been investigated. “As-grown” samples showed a moderate average activity which was related to the presence of a minority of electronically conducting areas among insulating zones. Electrochemical treatment in neutral conditions substantially increased the activity and heterogeneous apparent rate constants kapp for the three couples were measured in the range of 10− 2 cm s− 1 with a good stability in time. Current-sensing AFM images performed ex situ showed that the electrochemically pre-treated material presented a high superficial conductivity whereas the grown sample showed major area of low conductivity.  相似文献   

6.
The oxidation-reduction of the Ferri/Ferrocyanide couple in solution onto modified glassy carbon Rotating Disk Electrodes (RDE) covered by Os(II) bipyridile poly-vinylpyridile (OsBPP) polymer was studied at room temperature. Steady state polarization curves were carried out as a function of the rotation speed, the polymer thickness and the concentration of redox centers within the polymer. This system has the characteristic that the formal redox potentials of both the external redox couple (E0′(Fe(CN)63−/4−) = + 0.225 V vs. SCE) and the mediator polymer (E0′(OsBPP) = 0.260 V vs. SCE) lie very close. It is demonstrated that diffusion of the Ferri/Ferrocyanide inside the polymer can be ruled out. Since the processes of charge transfer at the metal/polymer and the mediating reaction are fast, the experimental results can be interpreted in terms of a kinetics in which the charge transport in the polymer or the diffusion in the solution may be the rate determining step, according to the experimental conditions. A simple model is considered that allows interpreting the experimental results quantitatively. Application of this model allows the determination of the diffusion coefficient of the electrons within the film, De ≈ 10−10 cm2 s−1.  相似文献   

7.
This paper provides first evidence of the impact of solution pH on the heterogeneous electron transfer rate constants of self-assembled films of single-walled carbon nanotubes (SWCNT) and SWCNT integrated to cobalt(II)tetra-aminophthalocyanine (SWCNT-CoTAPc) by sequential self-assembly. Using cyclic voltammetry and electrochemical impedance spectroscopy, we proved that both SAMs exhibit notable differences in their response to different buffered solution pH, with and without the presence of redox probe, [Fe(CN)6]4−/[Fe(CN)6]3−. Surface pKa value for the Au-Cys-SWCNT-CoTAPc was estimated as ca. 7.8, compared to that of the Au-Cys-SWCNT of about 5.5. Interestingly, both redox-active SAMs gave similar analytical response for epinephrine, giving well-resolved square wave voltammograms, with linear concentration range up to 130 μM, sensitivity of ca. 9.4 × 10−3 AM−1, and limit of detection ca. 6 μM. This analytical result implies that there is no detectable advantage of one of the SAMs over the other in the electrocatalytic detection of this neurotransmitter.  相似文献   

8.
Functionalized polypyrrole film were prepared by incorporation of (Fe(CN)6)4− as doping anion, during the electropolymerization of pyrrole onto a carbon paste electrode (CPE) in aqueous solution by using potentiostatic method. The electrochemical behavior of the (Fe(CN)6)3−/(Fe(CN)6)4− redox couple in polypyrrole was studied by cyclic voltammetry and double step potential chronoamperometry methods. In this study, an obvious surface redox reaction was observed and dependence of this reaction on the solution pH was illustrated. The electrocatalytic ability of polypyrrole/ferrocyanide films modified carbon paste electrode (Ppy/FCNMCPEs) was demonstrated by oxidation of ascorbic acid. It has been found that under optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such electrode occurs at a potential about 540 mV less positive than unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and catalytic reaction rate constant, kh′, were also determined by using various electrochemical approaches.The catalytic oxidation peak current showed a linear dependent on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 4.5×10−4 to 9.62×10−3 M of ascorbic acid with a correlation coefficient of 0.9999. The detection limit (2σ) was determined as 5.82×10−5 M.  相似文献   

9.
Hexacyanoferrate ion, [Fe(CN)6]4−, was immobilized by an ion-exchange reaction on the propylpyridiniumsilsesquioxane chloride polymer thin-film-coated SiO2/Al2O3 surface. The amount of [Fe(CN)6]4− immobilized was 0.22 mmol g−1 with a surface coverage of 9.6×10−6 mmol cm−2. A carbon paste electrode made with this material was prepared and its electrochemical properties studied. The electrode presented two well-defined redox peaks with midpoint potentials, Em, of 0.152 V vs SCE. This potential was not significantly affected by pH changes between 2 and 9.5. The electrode showed much reproducible responses and was successfully used to study the electrochemical oxidation of cysteine.  相似文献   

10.
In this work, the ion exchange characteristics of poly(butyl viologen) (PBV) thin films on a platinum electrode has been investigated by cyclic voltammetric (CV) scans. Since ferrocyanide anions (Fe(CN)64−) were added during the polymerization of the PBV thin-film for its stability, Fe(CN)64− could form charge transfer complex with monomer and co-deposited with polymer. Scanning electrochemical microscopy (SECM) was used to probe the released Fe(CN)64− ions from PBV film with Os(bpy)3Cl2 as a mediator for the approaching process in 0.5 M KCl medium. Mass changes during the redox process of the film were also monitored in-situ by electrochemical quartz crystal microbalance (EQCM). The ion exchange and transport behavior was observed during CV cycling of the film of the SECM and EQCM. The insertion and extraction of anions were found to be potential-dependence. Moreover, the decrease in tip current of released Fe(CN)64− with increasing cycle number accounted for the ion exchange between Fe(CN)64− and Cl in the KCl electrolyte. However, the Fe(CN)64−/Fe(CN)63− redox couple was found to be highly stable between 0.0 and 0.5 V (vs. Ag/AgCl/saturated KCl) in the phosphate buffer solution. Therefore, the electrochemical property of Fe(CN)64−/Fe(CN)63− redox couple was studied at different scan rates using CV technique. The peak currents were directly proportional to the scan rate as predicted for a surface confined diffusionless system. The surface coverage (Γ) and the concentration of Fe(CN)64− were determined to be 1.88 × 10−8 mol/cm2 and 0.641 mol/dm3, respectively. By neglecting cations incorporation during redox reaction of the PBV film and also based on the results obtained from energy-dispersive X-ray spectroscopy for the films of as-deposited, reduced and oxidized states, an ion exchange mechanism was proposed.  相似文献   

11.
An electrochemical impedance immunosensor for the detection of Escherichia coli was developed by immobilizing anti-E. coli antibodies at an Au electrode. The immobilization of antibodies at the Au electrode was carried out through a stable acyl amino ester intermediate generated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydrosuccinimide (NHS), which could condense antibodies reproducibly and densely on the self-assembled monolayer (SAM). The surface characteristics of the immunosensor before and after the binding reaction of antibodies with E. coli were characterized by atomic force microscopy (AFM). The immobilization of antibodies and the binding of E. coli cells to the electrode could increase the electro-transfer resistance, which was directly detected by electrochemical impedance spectroscopy (EIS) in the presence of Fe(CN)63−/Fe(CN)64− as a redox probe. A linear relationship between the electron-transfer resistance and the logarithmic value of E. coli concentration was found in the range of E. coli cells from 3.0 × 103 to 3.0 × 107 cfu mL−1 with the detection limit of 1.0 × 103 cfu mL−1. With preconcentration and pre-enrichment steps, it was possible to detect E. coli concentration as low as 50 cfu/mL in river water samples.  相似文献   

12.
Synthesis and properties of polymer brushes bearing ionic liquid moieties   总被引:1,自引:0,他引:1  
Poly(1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium chloride) (PEMEIm-Cl) brushes were grafted onto Au surface via surface initiated atom transfer radical polymerization (ATRP). The swelling/collapsed behavior of the brushes was characterized by AFM in different electrolyte solutions. These 15 nm ultrathin polyelectrolyte brushes can be used to modulate the interfacial resistance via conformational changes triggered by external electrolytes and solvent. The interfacial resistance was characterized using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) using [Fe(CN)6]3−/4− as the redox probe. The effects of electrolytes, the concentration and type of electrolytes and temperature are investigated in more detail.  相似文献   

13.
Liping Wang 《Electrochimica acta》2006,51(26):5961-5965
The electrochemical behaviour of the anticancer herbal drug emodin was investigated by cyclic voltammetry (CV) at glassy carbon electrode. In 0.05 M NH3-NH4Cl (50% ethanol, pH 7.2) buffer solution, a pair of quasi-reversible redox peaks at potentials of Ep1 = −0.688 V and Ep2 = −0.628 V and one irreversible anodic peak, which was a typical anodic peak of emodin, at Ep3 = −0.235 V appeared at a scan rate of 100 mV/s. The irreversible anodic peak currents are linearly related to the emodin concentrations in a range from 8.9 × 10−8 M to 7.8 × 10−6 M with a pre-concentration time of 80 s under −0.620 V. Using the established method without pretreatment and pre-separation, emodin in herbal drug was determined with satisfactory results. Moreover, the electrode process dynamics parameters were also investigated by electrochemical techniques.  相似文献   

14.
A glassy carbon (GC) electrode was modified with cobalt pentacyanonitrosylferrate (CoPCNF) film. Cyclic voltammetry (CV) of the CoPCNF onto the GC (CoPCNF/GC) shows a redox couple (FeIII/FeII) with a standard potential (E0′) of 580 mV. The current ratio Ipa/Ipc remains almost 1, and a peak separation (ΔEp) of 106 mV is observed in 0.5 M KNO3 as the supporting electrolyte. Anodic peak currents were found to be linearly proportional to the scan rate between 10 and 200 mV s−1, indicating an adsorption-controlled process. The redox couple of the CoPCNF film presents an electrocatalytic response to sulfide in aqueous solution. The analytical curve was linear in the concentration range of 7.5 × 10−5 to 7.7 × 10−4 M with a detection limit of 4.6 × 10−5 M for sulfide ions in 0.5 M KNO3 solution.  相似文献   

15.
Cyclic voltammetry (CV) was used to investigate electrochemical behavior of sodium tanshinone IIA sulfonate (STS) and the interaction between STS and salmon sperm DNA. STS had excellent electrochemical activity on the glassy carbon electrode (GCE) with a couple reversible redox peaks. In pH 4.0 phosphate buffer solution (PBS), the binding ratio between STS and salmon sperm DNA was calculated to be 1:1 and the binding constant was 1.67 × 104 L/mol. A chronic myelogenous leukemia (CML, Type b3a2) DNA biosensor was developed by immobilizing covalently single-stranded CML DNA fragment to a modified GCE. The surface hybridization of the immobilized single-stranded CML DNA fragment with its complementary DNA fragment was evidenced by electrochemical methods using STS as a novel electrochemical indicator, with a detection limit of 6.7 × 10−9 M and a linear range from 2.0 × 10−8 M to 2.0 × 10−7 M. Selective determination of complementary ssDNA was achieved using differential pulse voltammetry (DPV).  相似文献   

16.
The copper complex of 4,5-diazafluorene-9-one (dafone) and bromine ligands ([Cu(dafone)2]Br2) was prepared and its interaction with double-stranded salmon sperm DNA (dsDNA) in pH 8.0 Britton-Robinson (B-R) buffer solution was studied by electrochemical experiments at the glassy carbon electrode (GCE). It was revealed that Cu(dafone)2Br2 could bind with salmon sperm DNA strands mainly by intercalation mode. The binding number of [Cu(dafone)2]Br2 for each salmon sperm dsDNA chain and equilibrium constant of the binding reaction were calculated to be 3 and 2.8 × 1012 L3 mol−3, respectively. The Cu(dafone)2Br2 was further utilized as a new electrochemical DNA indicator for the detection of human hepatitis B virus (HBV) DNA fragment by differential pulse voltammetry (DPV). The difference of its electrochemical responses occurred between hybridized dsDNA duplex and probe DNA was explored to assess the selectivity of the developed electrochemical DNA biosensor. The constructed electrochemical DNA biosensor achieved a detection limit of 3.18 × 10−9 mol L−1 for complementary target DNA and also realized a robust stability and good reusability.  相似文献   

17.
Multinegatively charged metal complex, hexacyanoferrate ([Fe(CN)6]4−), was electrostatically trapped in the cationic polymer film of N,N-dimethylaniline (PDMA) which was electrochemically deposited on the boron-doped diamond (BDD) electrode by controlled-potential electro-oxidation of the monomer. This ferrocyanide-trapped PDMA film was used to catalyze the oxidation of ascorbic acid (AA). Increase in the oxidation current response with a negative shift of the anodic peak potential was observed at the cationic PDMA film-coated BDD (PDMA|BDD) electrode, compared with that at the bare BDD electrode. A more drastic enhancement in the oxidation peak current as well as more negative shift of oxidation potential was found at the ferrocyanide-trapped PDMA film-coated BDD ([Fe(CN)6]3−/4−|PDMA|BDD) electrode. This [Fe(CN)6]3−/4−|PDMA|BDD electrode can be used as an amperometric sensor of AA. Ferrocyanide, electrostatically trapped in the polymer film shows more electrocatalytic activity than that coordinatively attached to the polymer film or dissolved in the solution phase. The electrocatalytic current depends on the surface coverage of ferricyanide, ΓFe, within the polymer film. Diffusion coefficient (D) of AA in the solution was estimated by rotating disk electrode voltammetry: D = (5.8 ± 0.3) × 10−6 cm2 s−1. The second-order rate constant for the catalytic oxidation of AA by ferricyanide was also estimated to be 9.0 × 104 M−1 s−1. In the hydrodynamic amperometry using the [Fe(CN)6]3−/4−|PDMA|BDD electrode, a successive addition of 1 μM AA caused the successive increase in current response with equal amplitude and the sensitivity was calculated as 0.233 μA cm−2 μM−1.  相似文献   

18.
Vacuum-annealing imparts conductivity to initially insulating undoped polycrystalline chemical-vapor-deposited diamond, thus turning it to a possible electrode material. The diamond film annealed at 1775 K appeared to be practically not conducting. With further increase in the annealing temperature above 1825 K, the film effective resistivity decreased from initial value of 1011 to 1012 Ω cm down to less than 0.1 Ω cm; the differential capacitance increased from ∼10−3 to ∼50 μF per 1 cm2 of geometrical surface; the transfer coefficients for electrochemical reactions in the [Fe(CN)6]3−/4− redox solution increased from ∼0.2 to 0.5; and the degree of reversibility of the electrochemical reaction increased. The observed changes in the electrode properties are attributed to gradual change in the thickness and/or properties (first and foremost, conductivity) of the nondiamond carbon phase formed along the intercrystallite boundaries upon the annealing; the conducting phase is outcropping at the film surface as an array of microelectrodes (“active sites”).  相似文献   

19.
L. Agüí 《Electrochimica acta》2006,51(12):2565-2571
The construction and characterization of a new carbon-felt electrode design of small dimensions is reported. The electrode was checked by testing the electrochemical behaviour of the Fe(CN)63−/4− model system, as well as of several phenolic compounds with xenoestrogenic properties. The use of a carbon-felt cylinder electrode whose heigh was insulated with a poly(ethylene) cover and with two exposed bases of 2.0 mm diameter, resulted in an enhancement of the Fe(CN)63−/4− voltammetric peak current with respect to a conventional glassy carbon electrode with a similar outer surface, which suggests a high contribution of the redox probe solution trapped in the three-dimensional structure of the electrode. The contribution of the electrolysis of the redox probe trapped in the electrode matrix to the voltammetric response, as well as that of the mass transfer from bulk solution, were investigated. The voltammetric behaviour of phenolic compounds with xenoestrogenic properties showed adsorption onto the carbon-felt electrode. Penetration of these compounds into the electrode at open circuit was demonstrated. Two possible applications of the new electrode design are outlined: flow analysis with electrochemical detection of phenolic endocrine disruptors and the possibility of using it for removal of these compounds.  相似文献   

20.
We report on the electrooxidation of hydrazine catalyzed by single-walled carbon nanotube (SWCNT) functionalized with cobalt phthalocyanine (CoPc) which shows that the presence of the single-walled carbon nanotubes enhances the catalytic activity of the CoPc itself without any change in the reaction mechanism. A synergistic effect, in terms of reactivity when the new nanocomposite material was adsorbed on the GC electrode, was observed. The obtained hybrid electrodes were tested under hydrodynamic conditions, showing two different oxidation processes, which suggest the presence of two different types of active sites on the electrode surface catalyzing the reaction. Electrochemical impedance spectroscopy (EIS) analyses in the presence of [Fe(CN)6]3−/4− as a redox probe revealed that the GC/SWCNT + CoPc showed much lower electron-resistance (Ret) confirming the synergistic effect of the composite mentioned above. Atomic force microscopy (AFM) images showed the clear differences in surface roughness for each film, confirming the different compositions of the hybrid electrodes used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号