首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 891 毫秒
1.
为控制氧化铝陶瓷膜制备中的涂膜工艺,以异丙醇铝为原料,硝酸为胶溶剂,制备了AlOOH溶胶。通过旋转流变仪、Zeta电位分析仪等表征手段,研究了硝酸用量对AlOOH溶胶流变特性的影响。结果表明,硝酸与异丙醇铝摩尔比R(n(HNO3):n(Al(C3H7O3)3))为0.3~0.6时,AlOOH溶胶表现出假塑性流体特征。通过Herschel-Bulkley模型拟合流变测试数据得到的流动指数随着R的增大而减小,稠度系数随之增大;振幅扫描中储能模量(G′)与损耗模量(G″)均随着R增大而上升;频率扫描中G′与G″的交点随着R的增大而逐渐靠近低频。随着R的增大,AlOOH溶胶假塑性增强,稠度增大,弹性与黏性均上升,更易转变为凝胶。当R≥0.7时已经转化为凝胶,不再符合流体规律。Zeta电位的高低影响AlOOH溶胶的分散性,进而影响上述现象。  相似文献   

2.
Al2O3陶瓷膜在过滤染料废水过程中容易被染料大分子堵塞,导致Al2O3陶瓷膜水通量下降。以钛酸丁酯、异丙醇铝为前驱体,采用溶胶-凝胶法制备Ti(OH)4-AlOOH复合溶胶,经450 ℃烧成获得TiO2-Al2O3复合粉体。以SEM、纳米粒度/电位仪作为主要表征手段,研究了不同Ti(OH)4和AlOOH摩尔比对复合溶胶粒径分布的影响,进而探究TiO2-Al2O3复合粉体的光催化性能。结果表明,Ti(OH)4和AlOOH摩尔比为0~0.4时,随着Ti(OH)4和AlOOH摩尔比的增大,胶粒的平均粒径从67.5 nm减小到34.0 nm,Ti(OH)4-AlOOH复合溶胶的电位从43 mV升高至53 mV。当Ti(OH)4和AlOOH摩尔比为0.4时,复合粉体对结晶紫的去除率高达79.3%,反应速率常数增大到了0.018 min-1。TiO2-Al2O3复合粉体制备的陶瓷膜能有效降解表面沉积的大分子,解决了陶瓷膜堵塞的问题。  相似文献   

3.
采用高灵敏度纳米粒度分析仪,对以SB粉为原料,HNO3为解胶剂制备的γ AlOOH溶胶的粒径分布进行了研究。考察了酸度、浓度、胶解温度对γ AlOOH溶胶的质点大小、粒径分布和稳定性的影响。结果表明,AlOOH溶胶质点的大小随着酸度的降低先呈下降趋势,之后很快上升。当n(H+)∶n(AlOOH)=0.07,溶胶粒度分布最窄;胶体的酸度决定了胶体质点的存在形态,在n(H+)∶n(AlOOH)=0.08~0.1时,AlOOH溶胶稳定;SB粉的质量分数<7%,AlOOH胶粒的粒径随SB粉的质量分数变化不大,AlOOH溶胶稳定,SB粉的质量分数对溶胶的粒度分布影响不明显;在温度高于80℃时,SB粉在HNO3作用下胶解稳定的AlOOH溶胶粒度分布窄,性质稳定。  相似文献   

4.
γ-AlOOH溶胶的粒度和稳定性分析   总被引:1,自引:0,他引:1  
采用高灵敏度纳米粒度分析仪,对以SB粉为原料,HNO3为解胶剂制备的γ-AlOOH溶胶的粒径分布进行了研究.考察了酸度、浓度、胶解温度对γ-AlOOH溶胶的质点大小、粒径分布和稳定性的影响.结果表明,AlOOH溶胶质点的大小随着酸度的降低先呈下降趋势,之后很快上升.当n(H+):n(AlOOH)=0.07,溶胶粒度分布最窄;胶体的酸度决定了胶体质点的存在形态,在n(H+):n(AlOOH)=0.08~0.1时,AlOOH溶胶稳定;SB粉的质量分数<7%,AlOOH胶粒的粒径随SB粉的质量分数变化不大,AlOOH溶胶稳定,SB粉的质量分数对溶胶的粒度分布影响不明显;在温度高于80℃时,SB粉在HNO3作用下胶解稳定的AlOOH溶胶粒度分布窄,性质稳定.  相似文献   

5.
以SB粉为原料、HNO3为解胶剂成功地制备了稳定的γ-AlOOH溶胶。考察了酸度、浓度、胶解温度和添加剂等因素对γ-AlOOH溶胶的质点大小、粒径分布、稳定性及粘度等胶体性能的影响。实验结果表明,稳定γ-AlOOH溶胶适宜的制备条件为:n(H+)/n(AlOOH)=0.08~0.1,SB质量分数小于7%,胶解温度大于80 ℃,制得γ-AlOOH溶胶胶粒的平均粒径在18 nm左右。  相似文献   

6.
本文用传统高温熔融法熔制Li2O-Al2O3-SiO2系高铝玻璃,改变碱金属氧化物n(Li2O)/n(Na2O)的摩尔比,运用阿基米德排水法、热膨胀仪、DSC、傅里叶变换红外光谱和拉曼光谱等测试手段和仪器,探究了混合碱金属效应对Li2O-Al2O3-SiO2系玻璃结构和热膨胀性能的影响。结果显示:随着n(Li2O)/n(Na2O)比例增大,混合碱金属效应对Li2O-Al2O3-SiO2系玻璃的密度和热膨胀系数的影响一致,表现为先增大后减小,当R=0.25(R=n(Li2O)/[n(Li2O)+n(Na2O)],摩尔比)时,出现极值,此时密度达到最大2.447 4 g/cm3,热膨胀系数达到最大7.811 7×10-6/℃;对玻璃特征温度的影响随着温度的升高而逐渐减弱至消失;对玻璃的析晶能力有一定的提升作用;对玻璃三维骨架结构中的硅氧四面体Qn的影响也各不相同。  相似文献   

7.
本文以正硅酸乙酯(TEOS)为原料,在以氨水为催化剂的碱体系中,采用溶胶-凝胶法制备了二氧化硅溶胶。通过SEM-EDS、XRD、热重分析、激光粒度分析、Zeta电位等分析手段,研究了氨水的加入量对二氧化硅溶胶粒径以及稳定性的影响。研究结果表明,当pH值在11~12、氨水与TEOS的摩尔比R(n(NH3·H2O)∶n(TEOS))在1~10时,随着R值的增大,二氧化硅溶胶平均粒径y与R值x呈指数相关趋势,其拟合函数为y=2.22x1.79,相关性为0.96,粒径从10.17 nm (R=1)增加到142.48 nm (R=10),且胶粒的粒径分布半高宽从9.89 nm (R=1)增加到171.61 nm (R=10)。二氧化硅溶胶的稳定性则与氨水的加入量呈下抛物线趋势,其凝胶时间从684 h (R=1)下降到28 h (R=5),再上升到780 h (R=10)。  相似文献   

8.
由金属醇盐(M(OR)4)水解制备溶胶的方法已广泛应用于溶胶-凝胶法制备纳米孔无机膜。通过控制异丙醇钛[Ti(i-OC3H74]和正丙醇锆[Zr(n-OC3H74]的混合物在异丙醇(i-C3H7OH)中水解制备聚合型TiO2-ZrO2溶胶,利用小角X射线散射方法(SAXS)研究了初始反应混合物Ti(i-OC3H74:Zr(n-OC3H74:H2O:i-C3H7OH=0.9:0.1:m:30(摩尔比,m=1.8,2.0,2.2)形成TiO2-ZrO2溶胶的过程,探讨了水与醇盐摩尔比H2O/M(OR)4(M=Ti+Zr)、反应温度和正丙醇锆对TiO2-ZrO2溶胶形成的影响。研究结果表明,H2O/M(OR)4=1.8时,只有少量胶粒形成;H2O/M(OR)4=2.0~2.2时,TiO2-ZrO2溶胶中胶粒具有质量分形结构,分形维数1.2 ≤ Dm < 1.4;随着H2O/M(OR)4增加,胶粒的形成时间缩短,胶粒大小和分形维数均增大,溶胶的稳定性显著下降。升高反应温度有利于胶粒形成。[Ti(i-OC3H74+Zr(n-OC3H74]混合物比Ti(i-OC3H74水解快,H2O/M(OR)4相同时,TiO2-ZrO2溶胶比TiO2溶胶稳定性差。  相似文献   

9.
在H2O2/乙腈体系下以沉淀法制备的MgO为催化剂催化Baeyer-Villiger(B-V)氧化环己酮合成ε-己内酯,考察了制备条件和反应条件对环己酮转化率和己内酯收率的影响。根据实验结果,Mg(NO3)2·6H2O为前体,在煅烧温度为600℃、煅烧时间为2 h时制备MgO氧化性能最佳,由X射线衍射(XRD)、扫描电镜(SEM)进行了分析,可知随温度升高MgO粒径逐渐增大,500~800℃范围内,MgO晶粒尺寸由9.53 nm增大到29.49 nm。在n(催化剂)∶n(环己酮)=0.45∶1、n(乙腈)∶n(环己酮)=12∶1、n(双氧水)∶n(环己酮)=10∶1、70℃、6 h时获得环己酮转化率95.2%及ε-己内酯收率83.1%。对双氧水B-V氧化环己酮机理进行了深入的研究,采用在线原位红外光谱对反应进行实时监测与分析,验证了其过氧缩酰胺反应路径。  相似文献   

10.
为探究ZnO·Al2O3·nSiO2玻璃抗裂纹萌生能力(CR)随SiO2含量变化的演化规律,制备了一系列不同n值(n=2,2.35,2.5,2.65,3,3.5)的样品。基于CR和结构表征发现,CR随着n的增加呈先增大后减小的反常演化,并于n=2.5时出现极值(31.1 N)。这是源于随着n增大:(1)原子堆积份数逐渐减小,可致密化体积逐渐增加,从而导致CR逐步提高;(2)Al—O多面体结构单元含量逐步减少,导致CR逐步下降;(3)考虑到相界面对裂纹生长的强阻挡能力,中程异构分相(富Al和富Si相)致相界面数量呈先增多后减少的变化趋势,导致CR产生类似的非单调演化。上述三个因素的竞争和协同作用是该体系中CR呈反常演化的结构起源,但考虑到极值点附近较小的组分变化,中程异构致相界面数量随n增加呈现的非单调演变才应是CR呈反常演化的主要结构根源。  相似文献   

11.
异丙醇钛控制水解的小角X射线散射研究   总被引:1,自引:1,他引:0       下载免费PDF全文
由金属醇盐水解制备溶胶的方法已广泛应用于溶胶-凝胶法制备纳米孔无机膜,但对金属醇盐水解机理的认识十分有限。通过控制异丙醇钛[Ti(i-OC3H74]在异丙醇(i-C3H7OH)中水解制备TiO2溶胶,利用小角X射线散射(SAXS)方法研究了由不同H2O/Ti(i-OC3H74的反应混合物[Ti(i-OC3H74:H2O:i-C3H7OH=1:m:30(摩尔比)]形成TiO2溶胶的过程,探讨了控制Ti(i-OC3H74水解的过程中胶粒形成与长大的规律。研究结果表明,所合成的TiO2溶胶的胶粒粒径小于10 nm,胶粒的形成和长大与H2O/Ti(i-OC3H74摩尔比密切相关。H2O/Ti(i-OC3H74(摩尔比) ≥ 2.0时,随着H2O/Ti(i-OC3H74增加,溶胶的稳定性下降。  相似文献   

12.
《Ceramics International》2022,48(5):6528-6538
In order to directly prepare an High Flux Al2O3 nanofiltration membrane on an Al2O3 support with an average pore size of 4 μm, AlOOH sol was prepared with aluminum isopropoxide as the precursor, The effect of rheology on the dip-coating of AlOOH sol and the effect of viscoelasticity on the heat treatment of AlOOH gel film to prepare defect-free Al2O3 nanofiltration membrane were studied. The results indicate that AlOOH sol will increase its viscosity with the increase of the standing time. When the viscosity increases to a certain extent, the colloidal particles will gradually transform into gels, and change from Bingham fluid to Herschel-Bulkley pseudoplastic fluid. The thickness of the AlOOH gel film is related to the viscosity of the AlOOH sol. The flow viscosity of AlOOH sol should be about 0.0025~0.005 Pa·s, while the thickness of the AlOOH gel film after dip-coating is about 6.5~12 μm. The storage modulus and loss modulus of AlOOH gel film increase with the increase of aging time. Only when the storage modulus of the AlOOH gel is greater than the saturated vapor pressure of the solvent under normal pressure (0.1 MPa), it will not crack due to the evaporation of the sol during the heat treatment process. After the storage modulus exceeds 0.1 MPa, the surface of the heat-treated Al2O3 ceramic membrane is smooth and crack-free, the rejection rate for crystal violet dye is 99.8%, and its average pore size is 2.75 nm, that has the capability of nanofiltration. Due to the lack of intermediate layer, the pure water flux of the Al2O3 nanofiltration membrane is as high as 201.7 l.m-2bar-1h-1, and the steady-state filtration flux is 48.7 l.m-2bar-1h-1 when filtering 20 mg/l crystal violet solution. By controlling the rheological properties of AlOOH sol, a high flux Al2O3 nanofiltration membrane was prepared.  相似文献   

13.
The effect of particle size of silica, as catalyst binder, on the chemical and mechanical properties of iron based FT catalyst was studied in this work. The samples were characterized using XRD, BET, TEM, FT-IR, and H2-TPR, respectively. The attrition resistance and the FT activity were tested. Si-8–Si-15 catalysts prepared with 8–15 nm silica sol show good attrition resistance(attrition loss b 4%), especially Si-13 with an attrition loss of 1.89%. Hematite appeared in XRD patterns when silica sol above 15 nm is used. TEM micrographs show that no obvious Si O_2 particles appear when silica sol particle with size less than 8 nm was used, but Si O_2 particles coated with small ferrihydrite particles appear when silica sol above 8 nm was used. Si–O–Si vibration peak in FT-IR spectra increases with increasing silica sol size. Samples prepared with silica sol show good stability of FT reactions, and the average molecular weight of FT products increases with the increase of Si O_2 particle.  相似文献   

14.
The synthesis of colloidal boehmite (AlOOH) is studied by heating basic aluminum chloride solutions under constant stirring. The temperature and Al2O3: Cl molar ratio influence the product morphology. Synthesis at 140°C generates highly fibrous polycrystalline particles that are on average 360 nm long, 30 nm broad, and 8 nm thick. They contain 0.11 mol of excess H2O per 1 mol of AlOOH. Synthesis at temperatures between 140° and 190°C produces broader fibrils and less excess H2O. Preparation at 220°C eventually produces fully crystalline platelike boehmite particles about 260 nm long, 95 nm broad, and 14 nm thick, without excess H2O. Fibril synthesis requires an Al2O3:Cl molar ratio exceeding 1.0 to yield noncoagulated particles. The fibrils are fairly monodisperse with 20% standard deviation in their length for an Al2O3: Cl molar ratio about 1.0.  相似文献   

15.
提出了拟薄水铝石胶溶机理。利用FT-IR、粒度和Zeta电位及TEM表征,通过不同酸铝比和胶溶时间微观变化过程,探究拟薄水铝石(Al)O-H羟基数目与胶溶性的关系,结果表明,(Al)O-H羟基数越大,胶溶性越好。n(H~+)∶n(AlOOH)=0.05~0.6时,随着酸量增加,粒径变小,Zeta电位变大,溶胶趋于稳定;n(H~+)∶n(AlOOH)=0.7时出现凝胶,粒径变大。  相似文献   

16.
Nanostructured Al2O3 powders have been synthesized by combustion of aluminum powder in a microwave oxygen plasma, and characterized by X-ray diffraction and electron microscopy. The main phase is γ-Al2O3, with a small amount of δ-Al2O3. The particles are truncated octahedral in shape, with mean particle sizes of 21–24 nm. The effect of reaction chamber pressure on the phase composition and the particle size was studied. The γ-alumina content increases and the mean particle size decreases with decreasing pressure. No α-Al2O3 appears in the final particles. Electron microscopy studies find that a particle may contain more than one phase.  相似文献   

17.
In an attempt to improve the colloidal processing of Si3N4 ceramics, we studied the rheology and consolidation of colloidal suspensions of Si3N4 particles (average particle size 0.7 μm) with small Al2O3 particles (average particle size 20 nm). It was found that at pH >7, the viscosity of the mixtures increased and then decreased with an increasing concentration of Al2O3. λpotential measurements, optical micrographs, and visible light absorptance measurement suggest that such viscosity behavior is due to clustering of Si3N4 particles bridged by the small Al2O3 particles. This is also supported by the Derjaquin-Landau-Verwey-Overbeek (DLVO) potential calculations that show the barrier height in the DLVO potential between Al2O3 and Si3N4 is small. The small barrier height under current experimental conditions stems from the small size of the Al2O3 particles. The small barrier height allows the thermal motion of the two kinds of particles to overcome the barrier and attach to each other. The adsorption of small Al2O3 particles on Si3N4 can occur even when both Al2O3 and Si3N4 carry the same sign of charges. The adsorption of Al2O3 on Si3N4 also increases the density of consolidated compacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号