首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
A passive series, active shunt filter for high power applications   总被引:8,自引:0,他引:8  
This paper presents a hybrid series passive/shunt active power filter system for high power nonlinear loads. This work is motivated by the fact that the ability of a converter to perform effectively as an active filter is limited by the power and the frequency distribution of the distortion for which it must compensate. This system is comprised of a three-phase shunt active filter and series AC line smoothing reactance installed in front of the target load. The proposed system significantly reduces the required shunt active filter bandwidth. The space-vector pulse width modulation (PWM) controller is based on a dead-beat control model. It is implemented digitally using a single 16-bit microcontroller. This controller requires only the supply current to be monitored, an approach different from conventional methods. The paper provides background on the operation of the filter, the details of the power circuit, the details of the control design, representative waveforms, and spectral performance for a filter which supports a 15 kVA phase controlled rectifier load. Experimental data indicate that the active filter typically consumes 2% or less of the average load power, suggesting that a parallel filter is an efficient compensation approach. The spectral performance shows that the active filter brings the system into compliance with IEEE519-1992 up to the 33rd harmonic for an AC line smoothing reactance of 0.13 p.u  相似文献   

2.
This paper presents a fully-digital-controlled shunt hybrid filter for damping of harmonic propagation in power distribution systems. The harmonic propagation is caused by resonance between line inductances and power capacitors installed for power factor correction. A possible solution to damping out harmonic propagation is based on installation of a shunt pure active filter at the end of a feeder. This paper proposes a shunt hybrid active filter characterized by series connection of a seventh-tuned LC filter per phase and a small-rated three-phase active filter. Like the pure filter, the hybrid filter is connected to the end bus of a feeder. The capacitor of the LC filter imposes a high impedance to the fundamental frequency, so that the fundamental voltage appears across the capacitor. This unique feature allows us to directly connect the hybrid filter to the 6.6-kV power line without step-down transformers. Furthermore, the capacitor used in this hybrid filter is lighter, cheaper and smaller than the transformer used in the pure filter. Theoretical analysis, along with experimental results obtained from a 200-V, 20-kW laboratory system, verifies the viability and effectiveness of the proposed hybrid filter.  相似文献   

3.
Karve  S. 《IEE Review》2000,46(2):27-31
With uninterruptible power supplies now used in critical applications across every industrial sector, a standard terminology to describe types and performance measures has become essential. The author outlines how the international standards community has responded to this need by introducing IEC 62040-3 which distinguishes three types of UPS topology: passive standby, line interactive, and double conversion. These three topologies are described. For low power ratings (less than 2 kVA) all three topologies, as defined by the standards, are used. For medium to high power ratings, the case for the passive standby and the line interactive is, at best, marginal, in spite of their significantly lower cost. The vast majority of sales to medium to high-power rating applications are represented by double conversion UPSs (95% from a few kVA upwards; 98% above 10 kVA). The dominance of the double-conversion topology is attributable to its almost total lack of weaknesses, combined with the capacity to meet the needs of sensitive loads at these power ratings-a consequence of UPS being connected in series with the utility power sources  相似文献   

4.
On many electrified railway systems with single-phase 25-kV industrial frequency supply, the power quality can be particularly poor when conventional thyristor based locomotives are operating, and this constrains the amount of power that can be delivered to the locomotives. This paper presents a hybrid shunt compensation system consisting of alternatively a cascaded or a reduced topology multilevel active power filter, and a low rating passive damping filter. The active power filter is controlled by a novel hysteresis current regulation strategy, and both mitigates low-order voltage harmonic distortion along the feeder and provides root mean squared voltage support. The passive filter damps harmonic resonances that are typical in such 25-kV traction systems. The results show that the filter system can significantly increase traction system power transfer capacity with only a relatively small capital investment, allowing older thyristor based locomotives and increased traffic levels to be supported without necessarily requiring a complete system upgrade. Simulation and experimental results are included showing the performance of the filter for both steady state and transient conditions.  相似文献   

5.
This paper presents a nonlinear control technique for a three-phase shunt hybrid power filter (SHPF) to enhance its dynamic response when it is used to compensate for harmonic currents and reactive power. The dynamic model of the SHPF system is first elaborated in the stationary “abc” reference frame and then transformed into the synchronous orthogonal “dq” reference frame. The “dq” frame model is divided into two separate loops, namely, the two current dynamic inner loops and the dc-voltage dynamic outer loop. Proportional–integral (PI) controllers are utilized to control the SHPF input currents and dc-bus voltage. The currents track closely their references so that the SHPF behaves as a quasi-ideal current source connected in parallel with the load. It provides the reactive power and harmonic currents required by the nonlinear load, thereby achieving sinusoidal supply currents in phase with supply voltages under dynamic and steady-state conditions. The SHPF consists of a small-rating voltage-source inverter (VSI) in series with a fifth-harmonic tuned $LC$ passive filter. The rating of the VSI in the SHPF system is much smaller than that in the conventional shunt active power filter because the passive filter takes care of the major burden of compensation. The effectiveness of the control technique is demonstrated through simulation and experimentation under steady-state and dynamic operating conditions.   相似文献   

6.
This paper proposes an optimized sequential control technique for copper electrowinning high-current rectifiers. The converter comprises two series-connected six-pulse double-wye rectifiers, a step-down transformer, and a tuned input filter. The six-pulse rectifiers are fed from delta and polygon primary windings with different turns ratio and phase shifted by 5°. Under the proposed control scheme, one rectifier is kept at nominal output voltage, and the other one is phase controlled to control the load's current. The proposed strategy greatly improves the rectifier's performance, reducing its reactive power maximum demand by 62% compared to conventional rectifiers and, therefore, reduces the input filters power rating also by 62%. This is accomplished while keeping the input power factor above 0.95 throughout the whole operating range. Further, the converter's reactive power consumption presents a low varying characteristic, allowing it to use a fixed filter, even when operating from a power system not capable of withstanding large reactive power variations. Finally, it presents a harmonic current distortion comparable to conventional 12-pulse high-current rectifiers. This paper presents the design and optimization procedure of the rectifying system. A 2.5 kVA laboratory prototype was used to validate the converter model, later employed in evaluating the converter operating in a 10.5 MVA copper electrowinning facility. The results obtained confirm the advantages of the proposed converter and its control strategy  相似文献   

7.
The application of active power filtering to power systems in limited by the low switching rate of available high power inverter switches. In this paper, parallel and series connection of multiple voltage source inverter bridges are examined to increase their effective switching rate. The analysis of the inverter voltage spectrum for double edge modulation shows the modulation desired for the separate bridges in open loop. Intuitively “i” bridges in series or parallel increases the effective switch rate by a factor “i”. However the modulation process for each power converter maintains its pattern for its switching period T which gives a roll off at high frequencies and reduces effective bandwidth. The experimental system of two 10 kVA voltage source inverters demonstrated how the closed loop control strategies for the active filter can be applied for multiple bridges implementing periodic optimized error sawtooth feedback control. The double bridge closed loop system showed that the lowest switch frequency terms were double that of the separate bridges. The higher frequency switching lines that should have been cancelled in theory were still discernible due to the finite precision of the edge timing  相似文献   

8.
This paper discusses automatic gain adjustment in a fully-digital-controlled shunt active filter. This is the first step in cooperative control of the multiple active filters based on voltage detection for harmonic damping throughout power distribution systems. In general, the active filter should be equipped with an optimal control gain corresponding to the characteristic impedance of a distribution line. However, it is difficult to know circuit parameters of a real distribution line having various shunt capacitors and loads. Therefore, a main purpose of the gain adjustment is to make the active filter damp out harmonic propagation without considering the circuit parameters. In addition, the gain adjustment can reduce the compensating currents and losses in the active filter, and moreover it can avoid over-damping performance. Experiment results obtained from a 200-V, 20-kW laboratory system verify the effectiveness of the active filter equipped with automatic gain adjustment  相似文献   

9.
This paper presents a fully-digital-controlled shunt active filter for harmonic termination of a power distribution system. The main purpose of the active filter based on voltage detection is not to compensate for current harmonics but to damp out harmonic propagation caused by line inductors and shunt capacitors for power factor correction. However, time and phase delays inherent in digital controllers might lead to unsatisfactory harmonic-damping performance although digital controllers are preferable to analog controllers. This paper deals with the design and implementation of a digital controller for a shunt active filter based on voltage detection. Experimental results obtained from a laboratory system developed in this paper verify the viability and effectiveness of the fully-digital-controlled active filter  相似文献   

10.
This paper deals with unified power quality conditioners (UPQCs), which aim at the integration of series-active and shunt-active power filters. The main purpose of a UPQC is to compensate for voltage flicker/imbalance, reactive power, negative-sequence current and harmonics. In other words, the UPQC has the capability of improving power quality at the point of installation on power distribution systems or industrial power systems. This paper discusses the control strategy of the UPQC, with a focus on the how of instantaneous active and reactive powers inside the UPQC. Experimental results obtained from a laboratory model of 20 kVA, along with a theoretical analysis, are shown to verify the viability and effectiveness of the UPQC  相似文献   

11.
This paper discusses a transformerless hybrid active filter integrated into the 6.6-kV, 1-MW adjustable-speed motor drive having a three-phase diode rectifier at the front end. The hybrid filter consists of an active filter using a three-level diode-clamped pulsewidth modulator converter rated at 60 kVA, and a 250-kVA passive filter tuned to the seventh harmonic frequency. They are directly connected in series without a transformer. This circuit configuration enables one to use 1.2-kV insulated gate bipolar transistors because the dc voltage of the three-level converter is 1.32 kV (20% of 6.6 kV). Voltage balancing control characterized by superimposing a sixth harmonic zero-sequence voltage on the active filter voltage reference in each phase is introduced to the three-level converter with triangle carrier modulation. Experimental waveforms obtained from a 400-V, 15-kW downscaled system verify the viability and effectiveness of the proposed hybrid filter, keeping the two dc capacitor voltages well-balanced.  相似文献   

12.
This paper presents a model-based controller for a three-phase four-wire shunt active filter, which uses a three-leg split-capacitor topology to implement the voltage source inverter. The controller is aimed to compensate reactive power and harmonic distortion in the general case of distorted and unbalanced source voltages and load currents, including distorted loads connected between a phase and the neutral line. In addition, the controller is able to compensate for the homopolar component of the load current, that is, the current flowing to the source via the neutral line can be considerably reduced without modifying the actual topology. The complete model in (fixed frame) alphabetagamma-coordinates is presented. Special attention is given to the homopolar component (referred here as the gamma-component) of the line current, source voltage and control input, which are instrumental for the control design purpose. Experimental results in a 2 kVA prototype are provided to illustrate the benefits of the proposed solution.  相似文献   

13.
Three-phase four-wire shunt active filter control strategies   总被引:30,自引:0,他引:30  
This paper describes a three-phase four-wire shunt active power filter using a conventional three-leg converter, without the need of power supply at DC bus. Two approaches have been developed to control the active filter. Both control strategies consider harmonics and zero sequence components in the voltage and current simultaneously. The first one provides constant power and the second one sinusoidal current to the source, even under unbalanced voltage conditions. Simulation results from a complete model of shunt active filter are presented to validate and compare the control strategies  相似文献   

14.
Shunt active power filter synthesizing resistive loads   总被引:2,自引:0,他引:2  
The paper discusses the use of a shunt active power filter to compensate for the line current distortion and to improve the power factor. The advantages of the resistive load synthesis over the sinusoidal current synthesis when the filter is used in a system where the voltage is not perfectly sinusoidal are presented. The control circuit is based on analogic multipliers, and the currents follow the same waveforms of the respective line voltages. Experimental results of connecting a three-phase active power filter to a nonsinusoidal grid are presented  相似文献   

15.
本文介绍了并联型有源电力滤波器的工作原理和基于瞬时无功功率理论的谐波和无功电流检测方法,用Matlab SimUlink建立了带典型负载的电力有源滤波器的仿真模型,模拟实际系统,用于检验其策略和参数在实际条件下的工作情况。仿真模型的结果表明:基于瞬时无功功率理论的有源滤波器,可以很好的起到动态抑制电网谐波和补偿无功的作...  相似文献   

16.
三相直流侧和交流侧有源电力滤波器均可用于三相不可控整流桥的谐波治理。从谐波补偿效果、有源滤波器的补偿容量、开关应力三个方面对二者进行了分析和对比。分析结果表明,由于直流侧有源电力滤波器并联在整流桥的直流侧,在换相处的负载电流变化率比交流侧小得多,因此直流侧有源电力滤波器的补偿性能优于交流侧有源电力滤波器。同时由于直流侧有源电力滤波器工作在电压电流两个象限,因此其补偿容量和开关应力远小于交流侧有源电力滤波器。  相似文献   

17.
A novel on-line UPS with universal filtering capabilities   总被引:10,自引:0,他引:10  
A novel line-interactive uninterruptible power supply (UPS) is proposed that offers the characteristics of an “on-line” or “inverter-preferred” UPS (which incorporates a pulse-width modulation (PWM) rectifier) at a reduced cost. This new UPS is based on the combination of two full-bridge VSI converters: one in series with the input and the other in parallel with the load. The UPS acts as a line conditioner and output-voltage stabilizer in the presence of input power while charging the battery at a controlled rate. In case of loss of input power, the UPS can make a seamless transition to backup mode while supplying the load with a controlled sinusoidal voltage, drawing power from the battery. The series converter sees only a small percentage of the input voltage (typically, 10%-20%) while carrying the input current and therefore has a small kilovoltampere rating. The parallel converter supplies the load during blackout and hence determines the total kilovoltampere rating of the UPS. The reduced kilovoltampere rating of the series converter results in reduced system cost compared to conventional on-line systems without sacrificing any desirable characteristics. A laboratory version of the proposed UPS has been built to demonstrate the claimed capabilities, and both simulation and experimental results are included in the paper  相似文献   

18.
This paper proposes a robust three-phase active power-factor-correction (PFC) and harmonic reduction scheme suitable for higher power applications. The proposed system is a unique combination of a low-kilovoltampere 12-pulse rectifier system with a single-phase boost PFC scheme to shape the input current to near sinusoidal waveshape. The voltampere rating of the active PFC converter is 0.05 pu and is not exposed to line transients under varying load conditions. The proposed system is suitable for utility interface of higher power rectifiers employed in power supplies and adjustable-speed drive systems which demand clean input power characteristics in the range of 1-500 kW. The proposed system is rugged and, in the event the active control were to fail, the system reverts to 12-pulse operation with fifth and seventh harmonic cancellation. Analysis and design of the system is examined in detail, and simulation and experimental results on a 10 kVA prototype are shown  相似文献   

19.
The effectiveness of an active power filter depends basically on three characteristics: (a) the modulation method used; (b) the design characteristics of the PWM modulator; and (c) the method implemented to generate the reference template. For the last characteristic there are many methods, most of them complicated and hence difficult to implement and adjust. In this paper, a new method, which has simplicity at its main characteristic, is presented. The method is based on “sample and hold” circuits, synchronized with the peak value of the phase-to-neutral mains voltage. This method is useful for shunt active power filters and is capable to eliminate harmonics, compensate power factor, and correct unbalance problems simultaneously. It also has the ability to slow-down sudden transient changes in the load. Experimental results, with the reference template obtained with the method, are presented in the paper  相似文献   

20.
This paper presents the synthesis and performance of a shunt active power filter based on the three-phase pulsewidth modulation (PWM) voltage converter connected to the AC mains. Current harmonics and asymmetries caused by nonlinear loads can be compensated. A decoupled system in Park's variables is achieved and so simple controllers with excellent performance can be used. The controllers are implemented directly in the Park's referential. Expressions for the controller's synthesis are derived. Experimental results from a 2 kVA IGBT prototype showing excellent dynamic and steady-state system's performances are presented. The control circuit is implemented with analog and digital electronic circuits. A considerable amount of electronic circuits are needed. The method presented in this paper can also be implemented with a digital signal processor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号