首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
张应军 《中国钼业》2010,34(2):32-34
以硝酸铁和钼酸铵为原料,柠檬酸为络合剂,采用溶胶-凝胶法,制备固体超强酸催化剂S2O82-/Fe2O3-MoO3。催化剂制备的最佳条件为:浸泡液浓度为0.5 mol/L,焙烧温度为350℃,焙烧时间为3.0 h。用该催化剂通过试验合成丁醛乙二醇缩醛的最佳条件为:醇醛摩尔比为1.5∶1.0,催化剂用量为0.6 g,带水剂用量为10 mL,反应时间为1.0 h,缩醛收率可达89.3%以上。  相似文献   

2.
复合固体超强酸SO2-4/Fe2O3-MoO3催化合成乙酸辛酯   总被引:3,自引:0,他引:3  
以硝酸铁和钼酸铵为原料,柠檬酸为络合剂,采用溶胶-凝胶法,制备固体超强酸SO2-4/Fe2O3 MoO3.催化剂制备的最佳条件为:浸泡液浓度为0.5 mol/L,焙烧温度为350 ℃, 焙烧时间为3.5 h.用该催化剂通过正交试验合成乙酸辛酯的最佳条件为:酸醇摩尔比为1.35∶1.0,催化剂用量为0.8 g(以0.15 mol正辛醇为准),带水剂用量为12 mL,反应时间为2.5 h,其酯收率可达95%以上.  相似文献   

3.
以硝酸铁和钼酸铵为原料,柠檬酸为络合剂,采用溶胶-凝胶法,制备固体超强酸SO_4~(2-)/Fe_2O_3-MoO_3。催化剂制备的最佳条件为:浸泡液浓度为0.5mol/L,焙烧温度为350℃,焙烧时间为3.5h。用该催化剂通过正交试验合成乙酸辛酯的最佳条件为:酸醇摩尔比为1.35∶1.0,催化剂用量为0.8g(以0.15mol正辛醇为准),带水剂用量为12mL,反应时间为2.5h,其酯收率可达95%以上。  相似文献   

4.
张应军  程海军 《中国钼业》2011,35(5):28-30,48
以硫酸铁和硝酸钴为主要原料,采用沉淀-浸渍法制备新型固体超强酸催化剂SO42-/CoFe2O4,并用于苯乙酮1,2-丙二醇缩酮的合成反应。该催化剂制备的最优条件为:焙烧温度为500℃(,NH4)2SO4浸渍浓度0.6mol/L,焙烧时间为2.5 h。采用该催化剂通过正交试验得到合成苯乙酮1,2-丙二醇缩酮的最佳条件为:n(醇)∶n(酮)=1.6∶1.0,催化剂用量为0.6 g,带水剂甲苯用量为12 mL,反应时间为2.0 h,其收率可达89.7%以上。该催化剂具有催化活性高、不污染环境、可重复使用等特点。  相似文献   

5.
以氯化钛为主要原料,采用沉淀-浸渍法制备新型固体超强酸催化剂S2O82--/TiO2-MoO3,并用于丙酸苄酯的合成反应。该催化剂制备的最优条件为:焙烧温度为500℃,(NH4)2S2O8浸渍浓度0.5 mol/L,钼酸铵浸渍浓度为0.1 mol/L时,焙烧时间为2.5 h。采用该催化剂通过正交试验得到合成丙酸苄酯的最佳条件为:n(苄醇)∶n(丙酸)=1.5∶1.0,催化剂用量为0.6 g(以0.2 mol丙酸为准),带水剂环己烷用量为12 mL,反应时间为2.5 h,其酯化率可达96%以上。该催化剂具有催化活性高、不污染环境、可重复使用等特点。  相似文献   

6.
复合固体超强酸SO4^2-/Fe2O3-MoO3催化合成乙酸辛酯   总被引:1,自引:0,他引:1  
以硝酸铁和钼酸铵为原料,柠檬酸为络合剂,采用溶胶-凝胶法,制备固体超强酸SO4^2-/Fe2O3-MoO3。催化剂制各的最佳条件为;浸泡液浓度为0.5mol/L,焙烧温度为350℃,焙烧时间为3.5h。用该催化剂通过正交试验合成乙酸辛酯的最佳条件为:酸醇摩尔比为1.35:1.0,催化剂用量为0.8g(以0.15mol正辛醇为准),带水剂用量为12mL,反应时间为2.5h,其酯收率可达95%以上。  相似文献   

7.
以氯化钛为主要原料,采用沉淀-浸渍法制备新型固体超强酸催化剂S2O8^2- -/TiO2-MoO3,并用于丙酸苄酯的合成反应。该催化剂制备的最优条件为:焙烧温度为500℃,(NH4)2S2O8浸渍浓度0.5mol/L,钼酸铵浸渍浓度为0.1mol/L时,焙烧时间为2.5h。采用该催化剂通过正交试验得到合成丙酸苄酯的最佳条件为:n(苄醇):n(丙酸)=1.5:1.0,催化剂用量为0.6g(以0.2mol丙酸为准),带水剂环己烷用量为12mL,反应时间为2.5h,其酯化率可达96%以上。该催化剂具有催化活性高、不污染环境、可重复使用等特点。  相似文献   

8.
稀土固体超强酸SO42-/SnO2- Nd2O3催化合成棕榈酸甲酯   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备稀土固体超强酸催化剂SO4-/SnO2- Nd2O3,以工业棕榈酸和甲醇为原料催化合成棕榈酸甲酯.考察了氧化钕添加量、焙烧温度、硫酸浓度、醇酸质量比、催化剂用量和反应时间对酯化反应的影响.结果表明,当氧化钕添加量为5%,以2.0 mol/L硫酸浸渍后,于550℃下焙烧3h制备的催化剂性能最好.正交实验结果表明,合成棕榈酸甲酯的优化条件为:醇酸质量比为15∶25,催化剂用量为棕榈酸质量的6.0%,反应时间5h.在此条件下,酯化率为90.1%.  相似文献   

9.
通过浸渍--焙烧法制备了新型固体酸SO(2-)4/MnO2/γ-Al2O3催化剂,以草酸和异戊醇为原料合成了草酸二异戊酯,考察了催化剂的焙烧温度、催化剂用量、原料配比、反应时间、带水剂甲苯用量对反应的影响.最佳的反应条件为:催化剂焙烧温度500℃、催化剂用量1.5g、n(草酸):n (异戊醇)=1:3、带水剂甲苯30mL、回流时间1.5h;在最佳反应条件下,草酸二异戊酯的收率可达99.6%.新型固体酸SO(2-)4/MnO2/γ-Al2O3的催化活性高、产品收率高,后处理简便,无"三废"污染,符合节能环保、绿色催化的发展趋势.  相似文献   

10.
通过浸渍-焙烧法制备了新型固体酸SO4^2-/MnO2/γ-Al2O3催化剂,以草酸和异戊醇为原料合成了草酸二异戊酯,考察了催化剂的焙烧温度、催化剂用量、原料配比、反应时间、带水剂甲苯用量对反应的影响。最佳的反应条件为:催化剂焙烧温度500℃、催化剂用量1.5g,n(草酸):n(异戊醇)=1:3、带水剂甲苯30mL、回流时间1.5h;在最佳反应务件下,草酸二异戊酯的收率可达99.6%。新型固体酸SO4^2-/MnO2/γ-Al2O3的催化活性高、产品收率高,后处理简便,无“三废”污染,符合节能环保、绿色催化的发展趋势。  相似文献   

11.
SO2-4/TiO2-WO3催化合成环己酮1,2-丙二醇缩酮   总被引:3,自引:0,他引:3  
杨水金  罗义 《中国钨业》2004,19(4):29-32
介绍了以固体超强酸SO42-/TiO2-WO3为多相催化剂,通过环己酮和1,2-丙二醇反应合成了环己酮1,2-丙二醇缩酮,探讨了SO24-/TiO2-WO3对缩酮反应的催化活性,较系统地研究了酮醇量比,催化剂用量,反应时间诸因素对产品收率的影响.实验表明:SO24-/TiO2-WO3是合成环己酮1,2-丙二醇缩酮的良好催化剂,在n(环己酮):n(1,2-丙二醇)=1:1.5,催化剂用量为反应物料总质量的1.25%,环己烷为带水剂,反应时间1.5 h的优化条件下,环己酮1,2-丙二醇缩酮的收率可达88.5%.  相似文献   

12.
α-Fe_2O_3是最稳定的铁氧化物,具有良好的耐腐蚀、耐光性、磁性、催化性等特性。以Fe Cl3·6H2O为主要原料,采用水解沉淀法在一定的实验条件下制备出了椭球体的纳米α-Fe_2O_3。根据水解沉淀法的基本原理,研究了溶液p H值、Fe Cl3溶液浓度、焙烧温度对纳米α-Fe_2O_3显微形貌和颗粒尺寸的影响,利用SEM和XRD表征纳米α-Fe_2O_3的微观形貌和相结构。结果表明:制备纳米α-Fe_2O_3的最佳实验条件是溶液p H值为2.0,Fe Cl3溶液浓度为0.05 mol/L,产物前驱体的焙烧温度为400℃,制得的纳米α-Fe_2O_3纯度较高,平均粒径30~50 nm。  相似文献   

13.
磷钨酸催化剂催化合成缩酮   总被引:7,自引:0,他引:7  
罗玉梅  杨水金 《稀有金属》2004,28(4):787-789
以磷钨酸为催化剂,系统探讨了丁酮、环己酮分别与乙二醇、1,2-丙二醇反应生成缩酮,乙酰乙酸乙酯分别与乙二醇、1,2-丙二醇反应生成苹果酯、苹果酯-B的优化条件。系统探讨了催化剂用量、反应物的物质的量之比、反应时间对产品收率的影响。结果表明,磷钨酸是合成缩酮的优良催化剂,在醇酮(酯)摩尔比为1.5:1,催化剂用量为反应物料总质量的0.5%,反应时间1.0h的优化条件下,苹果酯收率为82.2%,苹果酯-B收率为90.3%,环己酮乙二醇缩酮收率为74.0%,环己酮1,2-丙二醇缩酮收率为77.6%,丁酮乙二醇缩酮收率为52.4%,丁酮1,2-丙二醇缩酮收率为70.1%。  相似文献   

14.
Fe(Ⅱ)-H2O2不同温度浸润改性活性炭是采用FeSO4·7H2O添加H2O2在温度100℃下纯浸润24 h(Fe(Ⅱ)-24 h)和高温蒸发15 min(Fe(Ⅱ)-15 min)制备.对2类材料进行SEM表征并对其吸附1.1 mg/L砷(Ⅴ)的性能进行比较.SEM显示Fe(Ⅱ)(0.485%)-24 h(0.485%为Fe(Ⅱ)-24 h的铁含量,下同)表面覆盖厚的棒状纳米羟基铁,Fe(Ⅱ)(1.35%)-15 min表面覆盖薄而烧结扭曲羟基铁;高温蒸发15 min有利于铁负载;Fe(Ⅱ)-24 h(108~142 mg/gFe)对砷(Ⅴ)吸附的铁效率是Fe(Ⅱ)-15 min(57~63 mg/gFe)的2倍;Fe(Ⅱ)(0.485%)-24 h在2pH3.5或9pH12时对砷(Ⅴ)的吸附平衡容量高于Fe(Ⅱ)(1.35%)-15 min,同时Fe(Ⅱ)(0.485%)-24 h在不同pH值的条件下铁的溶出量低于Fe(Ⅱ)(1.35%)-15 min;SO42-、NO3-、ClO4-、PO43-抑制Fe(Ⅱ)(0.485%)-24 h对砷(Ⅴ)的去除,PO43-抑制效果更为明显,Cl-(100 mg/L)和BrO3-促进其对砷(Ⅴ)的去除.  相似文献   

15.
以铁鳞在盐酸溶液中的浸出液为原料,采用强迫水解法制备不同形貌纳米Fe2O3光催化剂,研究了铁鳞浸出液纯度对于纳米Fe2O3的微观形貌和光催化性能的影响。结果表明:8g铁鳞与150ml物质的量浓度为3mol/L的盐酸溶液100℃回流反应2h,铁鳞的浸出率达到93%左右,且浸出液纯度较高;浸出液中的杂质离子改变了纳米Fe2O3的微观形貌;以铁鳞浸出液为原料制备出的纳米Fe2O3可见光光催化性能较好,光降解甲基蓝溶液50min后,其降解率可达82%左右。  相似文献   

16.
摘要:以电炉粉尘(EAFD)中提取的Zn2+、铁鳞中提取的Fe3+和六水合氯化镍(NiCl2·6H2O)为原料,采用水热法直接制备合成尖晶石型Ni ZnFe2O4。首先探讨了焙烧温度、NaOH与EAFD质量比和焙烧时间对电炉粉尘中Zn2+提取率以及HCl浓度对铁鳞中Fe3+浸出率的影响,然后分析了Ni ZnFe2O4合成条件对其磁性能的影响。结果表明,当NaOH与EAFD质量比为1∶1,焙烧温度为450℃,焙烧时间为1h时,电炉粉尘中锌的提取率为88.77%;当HCl浓度为1.75mol/L时,铁鳞中Fe3+浸出率为96.89%。当EAFD中提取的Zn2+、铁鳞中提取的Fe3+和NiCl2·6H2O的摩尔比控制为1∶20∶9时,可以成功制备尖晶石型Ni-ZnFe2O4,并且对合成的Ni ZnFe2O4进行热处理之后可以显著提高其磁性能,当热处理温度从150℃提高到450℃时,尖晶石型Ni-ZnFe2O4的饱和磁感应强度从13.35(A·m2)/kg增长到40.06(A·m2)/kg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号