首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
《Materials Letters》2005,59(19-20):2403-2407
To develop the polymer-based materials with high dielectric constant and thermal stability, Li and Ti doped NiO (LTNO) particles with super high dielectric constant (ε) were dispersed into pyromellitic dianhydride (PMDA) and 4, 4′-oxydianiline (ODA)-based polyimide. Through mixing LTNO particles with the poly(amic acid) precursor solution, casting film and following thermal curing, the polyimide/LTNO composite films were obtained. The thermal stability and structure of the composites were studied by TGA and X-ray diffraction, respectively. Dielectric and conductive measurements were adopted to investigate the properties of the samples. The results revealed that the obtained composites had good morphology stability, but their thermal resistances become a little lower in comparison with pure polyimide. With increasing the content of LTNO particles, ε and conductivity of the composite films increased greatly. For the sample with the LTNO content at 0.4 in volume fraction, ε was as high as 570 at the frequency of 100 Hz. It showed that doping LTNO particles into polyimide would be an efficient route to high ε composites.  相似文献   

2.
The dielectric property of anisotropic conductive film (ACF) as an interconnect materials in the flip–chip joints is becoming important concern for device packaging solution at high-frequency due to low parasitic effect on the signal transfer. The effects of non-conductive, dielectric filler content on dielectric properties of ACA materials, like dielectric constant, loss factor and loss tangent, and conductivity at high-frequency were investigated. Frequency is dominating factor in determining dielectric constant, loss factor, and conductivity. However, the filler content is dominant only on dielectric constant, not on the loss factor, and conductivity at low-frequency range. The effect of low dielectric constant (low-k) filler addition on high-frequency behavior of ACF interconnection in flip–chip assembly was also investigated. Impedance parameters of low-k ACF with Ni filler and low-k SiO2 filler extracted from measurement were compared with that of conventional ACF with only Ni filler. The resonant frequency of conventional ACF flip–chip interconnect was 13 GHz, while the resonant frequency of low-k ACF including low-k SiO2 filler was found at 15 GHz. This difference is originated from capacitance decrease of polymer matrix between bump and substrate pad due to change in dielectric constant of polymer matrix, which was verified by measurement-based modeling. The high-frequency property of the conductive adhesive flip–chip joint, such as resonant frequency can be enhanced by low-k polymer matrix.  相似文献   

3.
《Materials Letters》2007,61(11-12):2478-2481
We have investigated the effect of coupling agents with different organic moiety on the dielectric properties of polyimide/BaTiO3 (70 nm) composite films. INAAT (isopropyl tris(N-amino-ethyl aminoethyl)titanate, KR 44) and APTS (3-amino-propyl-triethoxysilane) were used as coupling agents, respectively, for homogeneous dispersion of BaTiO3 particles into a polyimide matrix. The composite films were prepared by pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA)-based polyimide. Enhanced dispersion of BaTiO3 particles was obtained by the use of INAAT with more organic moiety compared to that afforded by APTS. The polyimide composite with BaTiO3 particles (BaTiO3 content at 50 vol.%) treated by INAAT showed an increased dielectric constant of 19.03 while retaining an appropriate dielectric loss of 0.0109, as compared to the dielectric constant (14.64) of polyimide/APTS-treated BaTiO3 composite. The results of this work demonstrate the potential use of an INAAT coupling agent with more organo functional groups for obtaining enhanced dielectric properties in a polyimide/BaTiO3 composite for application in an embedded capacitor.  相似文献   

4.
Ultra-low dielectric constant silica/polyimide (SiO2/PI) composite nanofiber membranes are prepared by the combined sol–gel and electrospinning techniques. The emulsion composed of partially hydrolyzed tetraethoxysilane (TEOS) and polyamic acid (PAA) is spun to yield the precursor of the SiO2/PI fibers with a core–shell structure due to phase separation. The dielectric constant (k) of the composite membranes varies from 1.78 to 1.32 with increasing content of SiO2. The fibers accumulate and form the film with a large amount of pores leading the lower k. In addition, the interfacial reaction between SiO2 and the PI matrix reduces the value of k as the SiO2 concentration is increased. The thermal stability of PI increase after mixing with SiO2 and the SiO2/PI composite fibers have large commercial potential in the electronics industry.  相似文献   

5.
Low dielectric constant (low k) carbon-doped silicon oxide (CDO) films are obtained by plasma-enhanced chemical vapor deposition. The k value of the as-deposited CDO film is less than 2.9. However, the k value may be changed during the integration process. In integration process, photoresist removal is commonly implemented with oxygen plasma ashing or by wet chemical stripping. In this work, the impact of oxygen plasma treatment has been investigated on the quality of the low-k CDO films. Different plasma treatment conditions, including variable pressure, r.f. power, and treatment time were employed. A variety of techniques, including X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), atomic force microscopy (AFM), and scanning electron microscope (SEM) were used to analyze the effect of the oxygen plasma post-treatment on the low-k CDO films. The result indicates that oxygen plasma will damage the CDO film by removing the entire carbon content in the upper part of the film with increasing treatment time, which results in an increase in the k value and film thickness loss. Our result also confirms that with low r.f. power and low pressure, the damage will be less.  相似文献   

6.
In this study a low-k material, methyl-silsesquiazane (MSZ) has been investigated as a passivation dielectric layer for thin-film transistor (TFT) arrays. Compared with the conventional nitride film (k ∼ 7), the MSZ passivation layer exhibits a low residual stress and low dielectric constant (k ∼ 2.6) which lowers the RC delay in a device. The high transmittance and good planarization characteristics of a low-k MSZ film enhance the brightness and aperture ratio of thin-film transistors liquid crystal displays (TFT-LCDs).  相似文献   

7.
Sang-Jin Cho 《Thin solid films》2010,518(22):6417-6421
This study investigated the effects of plasma power and tetraethylorthosilane (TEOS) to cyclohexene ratios on low-κ organic-inorganic hybrid plasma polymer thin films deposited on silicon (100) substrates. These films were deposited using a plasma enhanced chemical vapor deposition (PECVD) method, in addition to the electrical and mechanical properties of the resulting composites. Cyclohexene and TEOS were used as organic and inorganic precursors, respectively, with hydrogen and argon as precursor bubbler gases. Furthermore, additional argon was used as a carrier gas. The as-grown polymerized thin films were analyzed using ellipsometry, Fourier-transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The ellipsometry results showed the thickness of the hybrid thin film, and the FT-IR spectra showed that the hybrid polymer thin films were completely fragmented and polymerized between cyclohexene and TEOS. AFM results showed that polymer films with a smooth surface could be grown under various deposition conditions, while TEM and XRD showed that the hybrid thin film was an amorphous plasma polymer thin film without porosity. In addition, current-voltage (C-V) curves were prepared to calculate the dielectric constants. Post-annealing was applied to investigate the thermal stability of hybrid plasma polymer thin films in the hardness, Young's modulus, thermal shrinkage, and the dielectric constant at 400 °C.  相似文献   

8.
In this paper, the line-to-line parasitic capacitance of an advanced interconnects with a low-k dielectric (k < 3.0) was extracted by electrical measurement on comb-serpentine structures with various spacing. The empirical values are higher than the prediction from the filed solver, especially in the small geometries. A model was derived based on the damage of low-k dielectric during processing, which causes the increase of the dielectric constant. Then, the effective dielectric constant was evaluated by both simulation and theoretical models. The k value of damage zone was determined from blanket wafer by mercury probe after oxygen plasma treatment. Good agreement was obtained after we modified the simulation structure to include the damage zone. Especially, the concept of low-k damage due to plasma treatment was characterized for the first time. Thus, it is possible to use this model in the future study, such as the porous low-k in 65 nm or even 45 nm generations.  相似文献   

9.
Two structures of low dielectric constant (low-k) SiOC films were elucidated in this work. Low-k thin film by remote plasma mode was mainly composed of inorganic Si-O-Si backbone bonds and some oxygen atoms are partially substituted by CH3, which lowers k value. The host matrix of low-k thin films deposited by direct plasma mode, however, was mainly composed of organic C-C bonds and “M” and “D” moieties of organosilicate building blocks, and thus the low dipole and ionic polarizabilities were the important factors on lowering k value.  相似文献   

10.
The incorporation of mesopores into silica films is an effective way to reduce the dielectric constant. However, the pores reduce the film mechanical strength. This study investigates two steps for preparing coating solution. One was the reflux of the silica colloid at 70 °C. The other was the addition of TPAOH (tetrapropylammonium hydroxide) into the colloid. The reflux step can increase the mechanical strength, reduce the flat band voltage and reduce the leakage current of the films. Nevertheless, the low-k value (k represents dielectric constant) increases as the porosity of the film falls. Adding a slight amount of TPAOH before the reflux process can recover both the porosity and the low k value, while maintaining the high mechanical strength and the low flat band voltage. Results of this study demonstrate that two more steps (the addition of TPAOH and the reflux) in the preparation of the coating solution can increase the film hardness and elastic modulus from 0.8 to 1.4 GPa and from 5.8 to 9.9 GPa respectively, while maintaining the low-k value close to 2.05.  相似文献   

11.
Atomic hydrogen generated by a heated tungsten catalyzer has been investigated in terms of the damage-less ash and restoration of damaged low-k dielectric. No difference of damaged thickness of low-k dielectric between before and after the ash by HF dip using patterned porous methyl silsesquioxane (MSQ) film was found. Moreover atomic hydrogen exposure slightly reduced capacitance of the micro-structured capacitor with the Cu wire and the CVD porous low-k dielectric.  相似文献   

12.
A sol–gel process was used to prepare polyimide–silica hybrid films from the fluorinated polyimide precursors (6FDA-ODA) and tetraethylorthosilicate (TEOS) in N,N-dimethyl acetamide. The hybrid film was then treated with hydrofluoric acid to remove the dispersed silica particles, leaving inside the film pores with diameters ranged from 80 nm to 1 μm, which depended on the size of the silica particles. The chemical structures and morphology of the hybrid and porous films were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The synthesized porous fluorinated polyimide films show low relative dielectric permittivity of 1.9, rendering them promising for microelectronic packaging materials.  相似文献   

13.
SiCOH low-k (k = 2.8) film etched in fluorocarbon (CF4 and CHF3) inductively coupled plasmas was characterized in this work. The surface composition and molecular structures of the low-k films after etching in the CF4, CHF3, CF4/Ar, and CHF3/Ar plasmas were characterized. A higher etch rate was observed with the CF4 plasmas than with the CHF3 plasmas. The etch rate of the low-k film in the CF4 plasmas was decreased and the etch rate in the CHF3 plasmas was increased by the Ar addition. After etching the low-k films, a decrease in the dielectric constant of up to 0.19 was observed. The thickness of the fluorocarbon (CFx) layer and CFx (x = 1, 2, 3)-to-carbon ratio obtained from the XPS C 1s peak increased with decreasing etch rate. The k-value was correlated with amount of Si-CH3 and Si-O related groups determined from the Fourier transform infrared (FT-IR) spectrum. The Si-O related peaks were markedly decreased after etching in the CF4 and CF4/Ar plasmas. The lower k-value was attributed to the increase of the Si-CH3/Si-O ratio after etching low-k film.  相似文献   

14.
S.K. Singh 《Thin solid films》2008,516(5):785-788
Hydrogenated amorphous silicon carbon (a-SiC:H) ultra thin films obtained by Hot wire chemical vapor deposition (HWCVD) have been shown to act as efficient diffusion barriers for copper on inter metal dielectric (IMD) layers which are of great significance for ultra-large scale integration (ULSI) circuits. In this work, we have studied the influence of the a-SiC:H barrier layer obtained by HWCVD which has implications towards issues related to the resistance to electromigration of Cu in the low dielectric (low-k) hydrogen silsesquioxane (HSQ) film. The presence of the ultra thin a-SiC:H film maintains the integrity of the Cu metal not only by suppressing Cu diffusion but also by increasing its crystallinity, which would have implications with respect to the mean time to failure (MTF) arising from metal electromigration. Though, we demonstrate this aspect on the low-k (HSQ)/Cu system, this should yield similar benefits for other low-k dielectric materials too.  相似文献   

15.
Low dielectric methylsilsesquioxane (MSQ) film can be synthesized by spin-coating on P–Si (100) wafer. Octamethyl cyclotetrasiloxane (D4) was used as a porosity promotion agent to MSQ film. Seven samples with different treatment were prepared. The dielectric constants of these MSQ films significantly lowered from 3.0 to 2.1. Fourier transform infrared spectroscopy was used to identify the Si–O–Si network structure, Si–O–Si cage structure and other bonds. The change of structure resulted in significant lowering of the dielectric constant (k). The capacitance–voltage (CV) characteristic by HP4294A was used to determine the dielectric constant. Current–voltage (IV) measurement by Keithley6517A was used to determine the breakdown electric field.  相似文献   

16.
采用溶胶-凝胶法合成出Li和Ti改性的氧化镍(LTNO)粒子,并通过前体溶液共混法首先制备聚酰胺酸/LTNO前体膜,再经亚胺化得到高介电常数聚酰亚胺/LTNO复合膜。研究发现,复合膜的介电性能可以通过调节LTNO的含量以及Li和Ti在LTNO中的比例来进行调控。选用按Li、Ni和Ti的摩尔百分比为0.30∶0.68∶0.02制备的LTNO粒子做填料,当其体积分数为0.4时,复合膜在100 Hz电场中的介电常数可以达到570。  相似文献   

17.
《Materials Letters》2006,60(13-14):1579-1581
Low-density materials, such as the commercially available hydrogen silsesquioxane (HSQ) offer a low dielectric constant. Thus, HSQ with a low value of k (∼ 2.85) can be spin-coated if the density of Si–H bonding is maintained at a high level and the formation of –OH bonds and absorption of water in the film is minimized. O2 plasma exposure on HSQ film increases leakage current. Also the dielectric constant shows a significant increase after O2 plasma exposure. Another consequence of the O2 plasma exposure is the significant decrease in the contact angle of the HSQ surface, which is not desirable. In this paper, we demonstrate that the surface passivation by hydrogen followed by oxygen plasma treatment of HSQ film for 30 min each leads to a regain of leakage current density and dielectric constant. These results show that the H2 plasma treatment is a promising technique to prevent the damage in the commercially available and highly applicable low-k materials and it also increases the visibility of its use at the 0.1-μm technology. The more hydrophilic nature of the HSQ surface after O2 plasma exposure leads to an increased moisture absorption with a subsequent increase in the dielectric constant.  相似文献   

18.
With semiconductor technologies continuously pushing the miniaturization limits, there is a growing interest in developing novel low dielectric constant materials to replace the traditional dense SiO2 insulators. In order to survive the multi-level integration process and provide reliable material and structure for the desired integrated circuits (IC) functions, the new low-k materials have to be mechanically strong and stable. Therefore the material selection and mechanical characterization are vital for the successful development of next generation low-k dielectrics. A new class of low-k materials, nanoporous pure-silica zeolite, is prepared in thin films using IC compatible spin coating process and characterized using depth sensing nanoindentation technique. The elastic modulus of the zeolite thin films is found to be significantly higher than that of other low-k materials with similar porosity and dielectric constants. Correlations between the mechanical, microstructural and electrical properties of the thin films are discussed in detail.  相似文献   

19.
In this paper, new porous spin-on dielectric (HL02™, trademark of the LG Ltd.) was studied. The characterizations, such as thermal stability, chemical structure, dielectric constant (k) and mechanical properties (hardness and modulus), of methylsilsesquioxane (MSQ)-based dielectrics were evaluated. An optimized material (k = 2.25), characterized by a hardness and a modulus of 1.0 GPa and 6.5 GPa each in association with a porosity of 30% and a mean pore radius of 2.2 nm, was successfully integrated in damascene process with 10 levels of Cu/low-k film for 65 nm technology and beyond. Good electrical results were obtained in metal line resistance and leakage current.  相似文献   

20.
We report the synthesis of a polyimide matrix with a low dielectric constant for application as an intercalation material between metal interconnections in electronic devices. Porous activated carbon was embedded in the polyimide to reduce the dielectric constant, and a thin film of the complex was obtained using the spin-coating and e-beam irradiation methods. The surface of the thin film was modified with fluorine functional groups to impart water resistance and reduce the dielectric constant further. The water resistance was significantly improved by the modification with hydrophobic fluorine groups. The dielectric constant was effectively decreased by porous activated carbon. The fluorine modification also resulted in a low dielectric constant on the polyimide surface by reducing the polar surface free energy. The dielectric constant of polyimide film decreased from 2.98 to 1.9 by effects of porous activated carbon additive and fluorine surface modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号