首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Computing shortest paths in a directed graph has received considerable attention in the sequential RAM model of computation. However, developing a polylog-time parallel algorithm that is close to the sequential optimal in terms of the total work done remains an elusive goal. We present a first step in this direction by giving efficient parallel algorithms for shortest paths in planar layered digraphs.We show that these graphs admit special kinds of separators calledone- way separators which allow the paths in the graph to cross it only once. We use these separators to give divide- and -conquer solutions to the problem of finding the shortest paths between any two vertices. We first give a simple algorithm that works in the CREW model and computes the shortest path between any two vertices in ann-node planar layered digraph in timeO(log2 n) usingn/logn processors. We then use results of Aggarwal and Park [1] and Atallah [4] to improve the time bound toO(log2 n) in the CREW model andO(logn log logn) in the CREW model. The processor bounds still remain asn/logn for the CREW model andn/log logn for the CRCW model.Support for the first and third authors was provided in part by a National Science Foundation Presidential Young Investigator Award CCR-9047466 with matching funds from IBM, by NSF Research Grant CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052, ARPA, Order 8225. Support for the second author was provided in part by NSF Research Grant CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052 and ARPA Order 8225.  相似文献   

2.
We present a technique for dynamically maintaining a collection of arithmetic expressions represented by binary trees (whose leaves are variables and whose internal nodes are operators). A query operation asks for the value of an expression (associated with the root of a tree). Update operations include changing the value of a variable and combining or decomposing expressions by linking or cutting the corresponding trees. Our dynamic data structure uses linear space and supports queries and updates in logarithmic time. An important application is the dynamic maintenance of maximum flow and shortest path in series-parallel digraphs under a sequence of vertex and edge insertions, series and parallel compositions, and their respective inverses. Queries include reporting the maximum flow or shortestst-path in a series-parallel subgraph.Research supported in part by the National Science Foundation under Grant CCR-9007851, by the US Army Research Office under Grants DAAL03-91-G-0035 and DAAH04-93-0134, by the Office of Naval Research and the Defense Advanced Research Projects Agency under Contract N00014-91-J-4052, ARPA Order 8225, and by Cadre Technologies, Inc.  相似文献   

3.
Algorithms for parallel memory,II: Hierarchical multilevel memories   总被引:1,自引:0,他引:1  
In this paper we introduce parallel versions of two hierarchical memory models and give optimal algorithms in these models for sorting, FFT, and matrix multiplication. In our parallel models, there areP memory hierarchies operating simultaneously; communication among the hierarchies takes place at a base memory level. Our optimal sorting algorithm is randomized and is based upon the probabilistic partitioning technique developed in the companion paper for optimal disk sorting in a two-level memory with parallel block transfer. The probability of using/times the optimal running time is exponentially small in (log ) logP.A summarized version of this research was presented at the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, MD, May 1990. This work was done while the first author was at Brown University. Support was provided in part by a National Science Foundation Presidential Young Investigator Award with matching funds from IBM, by NSF Research Grants DCR-8403613 and CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval Research and the Defense Advanced Research Projects Agency under Contract N00014-91-J-4052 ARPA Order 8225. This work was done in part while the second author was at Brown University supported by a Bellcore graduate fellowship and at Bellcore.  相似文献   

4.
Algorithms for parallel memory,I: Two-level memories   总被引:1,自引:0,他引:1  
We provide the first optimal algorithms in terms of the number of input/outputs (I/Os) required between internal memory and multiple secondary storage devices for the problems of sorting, FFT, matrix transposition, standard matrix multiplication, and related problems. Our two-level memory model is new and gives a realistic treatmentof parallel block transfer, in which during a single I/O each of theP secondary storage devices can simultaneously transfer a contiguous block ofB records. The model pertains to a large-scale uniprocessor system or parallel multiprocessor system withP disks. In addition, the sorting, FFT, permutation network, and standard matrix multiplication algorithms are typically optimal in terms of the amount of internal processing time. The difficulty in developing optimal algorithms is to cope with the partitioning of memory intoP separate physical devices. Our algorithms' performances can be significantly better than those obtained by the wellknown but nonoptimal technique of disk striping. Our optimal sorting algorithm is randomized, but practical; the probability of using more than times the optimal number of I/Os is exponentially small inl(logl) log(M/B), whereM is the internal memory size.A summarized version of this research was presented at the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, MD, May 1990. This work was done while the first author was at Brown University. Support was provided in part by a National Science Foundation Presidential Young Investigator Award with matching funds from IBM, by NSF Research Grants DCR-8403613 and CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval Research and the Defense Advanced Research Projects Agency under Contract N00014-91-J-4052 ARPA Order 8225. This work was done in part while the second author was at Brown University supported by a Bellcore graduate fellowship and at Bellcore.  相似文献   

5.
In this paper we consider the problem of using disk blocks efficiently in searching graphs that are too large to fit in internal memory. Our model allows a vertex to be represented any number of times on the disk in order to take advantage of redundancy. We give matching upper and lower bounds for completed-ary trees andd-dimensional grid graphs, as well as for classes of general graphs that intuitively speaking have a close to uniform number of neighbors around each vertex. We also show that, for the special case of grid graphs blocked with isothetic hypercubes, there is a provably better speed-up if even a small amount of redundancy is permitted.Support was provided in part by an IBM Graduate Fellowship, by NSF Research Grants CCR-9007851 and IRI-9116451, and by Army Research Office Grant DAAL03-91-G-0035.Support was provided in part by NSF Grants CCR-9003299, CCR-9300079, and IRI-9116843, and by NSF/DARPA Grant CCR-8908092.Support was provided in part by a National Science Foundation Presidential Young Investigator Award CCR-9047466 with matching funds from IBM, by NSF Research Grant CCR-9007851, and by Army Research Office Grant DAAL03-91-G-0035.  相似文献   

6.
Given a textstringx of lengthn, theMinimal Augmented Suffix Tree T (x) ofx is a digital-search index that returns, for anyquery stringw and in a number of comparisons bounded by the length ofw, the maximum number of nonoverlapping occurrences ofw inx. It is shown that, denoting the length ofx byn, T(x) can be built in timeO(n log2 n) and spaceO(n logn), off-line on a RAM.This research was supported in part, through the Leonardo Fibonacci Institute, by the Istituto Trentino di Cultura, Trento, Italy.Additional support was provided by NSF Grants CCR-8900305 and CCR-9201078, by NATO Grant CRG 900293, by the National Research Council of Italy, and by the ESPRIT III Basic Research Programme of the EC under Contract No. 9072 (Project GEPPCOM).Additional support was provided by NSF Grant CCR-91-96176 and ONR Contract N 00014-91-J-4052, ARPA Order 2225.  相似文献   

7.
We present the first optimal parallel algorithms for the verification and sensitivity analysis of minimum spanning trees. Our algorithms are deterministic and run inO(logn) time and require linear-work in the CREW PRAM model. These algorithms are used as a subroutine in the linear-work randomized algorithm for finding minimum spanning trees of Cole, Klein, and Tarjan. Research partially supported by a National Science Foundation Graduate Fellowship and by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, Grant No. NSF-STC88-09648. Research at Princeton University was partially supported by the National Science Foundation, Grant No. CCR-8920505, the Office of Naval Research, Contract No. N00014-91-J-1463, and by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, Grant No. NSF-STC88-09648.  相似文献   

8.
In this paper we present an O(1/ logn)-time parallel algorithm for computing the convex hull ofn points in 3. This algorithm usesO(@#@ n1+a) processors on a CREW PRAM, for any constant 0 < 1. So far, all adequately documented parallel algorithms proposed for this problem use time at least O(log2 n). In addition, the algorithm presented here is the first parallel algorithm for the three-dimensional convex hull problem that is not based on the serial divide-and-conquer algorithm of Preparata and Hong, whose crucial operation is the merging of the convex hulls of two linearly separated point sets. The contributions of this paper are therefore (i) an O(logn)-time parallel algorithm for the three-dimensional convex hull problem, and (ii) a parallel algorithm for this problem that does not follow the traditional paradigm.This paper was presented in preliminary form at the 9th Annual ACM Symposium on Computational Geometry, San Diego, CA, May 1993 [32]. The work of N. M. Amato was supported in part by an AT&T Bell Laboratories Graduate Fellowship, the Joint Services Electronics Program (U.S. Army, U.S. Navy, U.S. Air Force) under Contract N00014-90-J-1270, and NSF Grant CCR-89-22008. This work was done while N. M. Amato was with the Department of Computer Science at the University of Illinois. The work of F. P. Preparata was supported in part by NSF Grants CCR-91-96152, CCR-91-96176, and ONR Contract N00014-91-J-4052, ARPA order 8225.  相似文献   

9.
Support functions and samples of convex bodies in R n are studied with regard to conditions for their validity or consistency. Necessary and sufficient conditions for a function to be a support function are reviewed in a general setting. An apparently little known classical such result for the planar case due to Rademacher and based on a determinantal inequality is presented and a generalization to arbitrary dimensions is developed. These conditions are global in the sense that they involve values of the support function at widely separated points. The corresponding discrete problem of determining the validity of a set of samples of a support function is treated. Conditions similar to the continuous inequality results are given for the consistency of a set of discrete support observations. These conditions are in terms of a series of local inequality tests involving only neighboring support samples. Our results serve to generalize existing planar conditions to arbitrary dimensions by providing a generalization of the notion of nearest neighbor for plane vectors which utilizes a simple positive cone condition on the respective support sample normals.This work partially supported by the Center for Intelligent Control Systems under the U.S. Army Research Office Grant DAAL03-92-G-0115, the Office of Naval Research under Grant N00014-91-J-1004, and the National Science Foundation under Grant MIP-9015281.Partially supported by the National Science Foundation under grant IRI-9209577 and by the U.S. Army Research Office under grant DAAL03-92-G-0320  相似文献   

10.
LetP be a simple polygon withn vertices. We present a simple decomposition scheme that partitions the interior ofP intoO(n) so-called geodesic triangles, so that any line segment interior toP crosses at most 2 logn of these triangles. This decomposition can be used to preprocessP in a very simple manner, so that any ray-shooting query can be answered in timeO(logn). The data structure requiresO(n) storage andO(n logn) preprocessing time. By using more sophisticated techniques, we can reduce the preprocessing time toO(n). We also extend our general technique to the case of ray shooting amidstk polygonal obstacles with a total ofn edges, so that a query can be answered inO( logn) time.Work by Bernard Chazelle has been supported by NSF Grant CCR-87-00917. Work by Herbert Edelsbrunner has been supported by NSF Grant CCR-89-21421. Work by Micha Sharir has been supported by ONR Grants N00014-89-J-3042 and N00014-90-J-1284, by NSF Grant CCR-89-01484, and by grants from the U.S.-Israeli Binational Science Foundation, the Fund for Basic Research administered by the Israeli Academy of Sciences, and the G.I.F., the German-Israeli Foundation for Scientific Research and Development.  相似文献   

11.
A new general parallel algorithmic technique for computations on trees is presented. In particular, it provides the firstn/logn processor,O(logn)-time deterministic EREW PRAM algorithm for expression tree evaluation. The technique solves many other tree problems within the same complexity bounds.Richard Cole was supported in part by NSF Grants DCR-84-01633 and CCR-8702271, ONR Grant N00014-85-K-0046 and by an IBM faculty development award. Uzi Vishkin was supported in part by NSF Grants NSF-CCR-8615337 and NSF-DCR-8413359, ONR Grant N00014-85-K-0046, by the Applied Mathematical Science subprogram of the office of Energy Research, U.S. Department of Energy under Contract DE-AC02-76ER03077 and the Foundation for Research in Electronics, Computers and Communication, administered by the Israeli Academy of Sciences and Humanities.  相似文献   

12.
We present anO(n 2 log3 n) algorithm for the two-center problem, in which we are given a setS ofn points in the plane and wish to find two closed disks whose union containsS so that the larger of the two radii is as small as possible. We also give anO(n 2 log5 n) algorithm for solving the two-line-center problem, where we want to find two strips that coverS whose maximum width is as small as possible. The best previous solutions of both problems requireO(n 3) time.Pankaj Agarwal has been supported by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), an NSF Science and Technology Center, under Grant STC-88-09648. Micha Sharir has been supported by the Office of Naval Research under Grants N00014-89-J-3042 and N00014-90-J-1284, by the National Science Foundation under Grant CCR-89-01484, by DIMACS, and by grants from the US-Israeli Binational Science Foundation, the Fund for Basic Research administered by the Israeli Academy of Sciences, and the G.I.F., the German-Israeli Foundation for Scientific Research and Development. A preliminary version of this paper has appeared inProceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms, 1991, pp. 449–458.  相似文献   

13.
Summary A variant of the drinking philosophers algorithm of Chandy and Misra is described and proved correct in a modular way. The algorithm of Chandy and Misra is based on a particular dining philosophers algorithm and relies on certain properties of its implementation. The drinking philosophers algorithm presented in this paper is able to use an arbitrary dining philosophers algorithm as a subroutine; nothing about the implementation needs to be known, only that it solves the dining philosophers problem. An important advantage of this modularity is that by substituting a more time-efficient dining philosophers algorithm than the one used by Chandy and Misra, a drinking philosophers algorithm withO(1) worst-case waiting time is obtained, whereas the drinking philosophers algorithm of Chandy and Misra hasO(n) worst-case waiting time (forn philosophers). Careful definitions are given to distinguish the drinking and dining philosophers problems and to specify varying degrees of concurrency. Jennifer L. Welch received her B.A. in 1979 from the University of Texas at Austin, and her S.M. and Ph.D. from the Massachusetts Institute of Technology in 1984 and 1988 respectively. She has been a member of technical staff at GTE Laboratories Incorporated in Waltham, Massachusetts and an assistant professor at the University of North Carolina at Chapel Hill. She is currently an assistant professor at Texas A&M University. Her research interests include algorithms and lower bounds for distributed computing.Much of this work was performed while this author was at the Laboratory for Computer Science, Massachusetts Institute of Technology, supported by the Advanced Research Projects Agency of the Department of Defense under contract N00014-83-K-0125, the National Science Foundation under grants DCR-83-02391 and CCR-86-11442, the Office of Army Research under contract DAAG29-84-K-0058, and the Office of Naval Research under contract N00014-85-K-0168. This author was also supported in part by NSF grant CCR-9010730, an IBM Faculty Development Award, and NSF Presidential Young Investigator Award CCR-9158478This author was supported by the Office of Naval Research under contract N00014-91-J-1046, the Advanced Research Projects Agency of the Department of Defense under contract N00014-89-J-1988, and the National Science Foundation under grant CCR-89-15206. The photograph and autobiography of Professor N.A. Lynch were published in Volume 6, No. 2, 1992 on page 121  相似文献   

14.
We studylazy structure sharing as a tool for optimizing equivalence testing on complex data types. We investigate a number of strategies for implementing lazy structure sharing and provide upper and lower bounds on their performance (how quickly they effect ideal configurations of our data structure). In most cases when the strategies are applied to a restricted case of the problem, the bounds provide nontrivial improvements over the naïve linear-time equivalence-testing strategy that employs no optimization. Only one strategy, however, which employs path compression, seems promising for the most general case of the problem.Work completed while at Princeton University and supported by a Fannie and John Hertz Foundation Fellowship, National Science Foundation Grant No. CCR-8920505, and the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) under NSF-STC-91-19999.Work completed while at Princeton University and DIMACS and supported by DIMACS under NSF-STC-91-19999.Research at Princeton University partially supported by the National Science Foundation, Grant No. CCR-8920505, the Office of Naval Research, Contract No. N00014-91-J-1463, and by DIMACS under NSF-STC-91-19999.  相似文献   

15.
This paper determines upper bounds on the expected time complexity for a variety of parallel algorithms for undirected and directed random graph problems. For connectivity, biconnectivity, transitive closure, minimum spanning trees, and all pairs minimum cost paths, we prove the expected time to beO(log logn) for the CRCW PRAM (this parallel RAM machine allows resolution of write conflicts) andO(logn · log logn) for the CREW PRAM (which allows simultaneous reads but not simultaneous writes). We also show that the problem of graph isomorphism has expected parallel timeO(log logn) for the CRCW PRAM andO(logn) for the CREW PRAM. Most of these results follow because of upper bounds on the mean depth of a graph, derived in this paper, for more general graphs than was known before.For undirected connectivity especially, we present a new probabilistic algorithm which runs on a randomized input and has an expected running time ofO(log logn) on the CRCW PRAM, withO(n) expected number of processors only.Our results also improve known upper bounds on the expected space required for sequential graph algorithms. For example, we show that the problems of finding connected components, transitive closure, minimum spanning trees, and minimum cost paths have expected sequential spaceO(logn · log logn) on a deterministic Turing Machine. We use a simulation of the CRCW PRAM to get these expected sequential space bounds.This research was supported by National Science Foundation Grant DCR-85-03251 and Office of Naval Research Contract N00014-80-C-0647.This research was partially supported by the National Science Foundation Grants MCS-83-00630, DCR-8503497, by the Greek Ministry of Research and Technology, and by the ESPRIT Basic Research Actions Project ALCOM.  相似文献   

16.
Thetimed automaton model of [LyV92, LyV93] is a general model for timing-based systems. A notion oftimed action transducer is here defined as an automata-theoretic way of representing operations on timed automata. It is shown that two timed trace inclusion relations are substitutive with respect to operations that can be described by timed action transducers. Examples are given of operations that can be described in this way, and a preliminary proposal is given for an appropriate language of operators for describing timing-based systems.A preliminary version of this paper appeared in W.R. Cleaveland, editor,Proceedings CONCUR'92, Stony Brook, New York. LNCS 630, pages 436–455. Springer, 1992.Supported by ONR contracts N00014-85-K-0168 and N00014-91-J-1988, by NSF grant CCR-8915206, and by ARPA contracts N00014-89-J-1988 and N00014-92-J-4033.Supported by ESPRIT BRA 7166 CONCUR2 and by the HCM network EXPRESS. Part of the work on this paper was done while the author was at the Ecole des Mines, CMA, Sophia Antipolis, France, and at CWI, Amsterdam, The Netherlands.  相似文献   

17.
We present three explicit schemes for distributingM variables amongN memory modules, whereM=Θ(N 1.5),M = Θ(N 2), andM=Θ(N 3), respectively. Each variable is replicated into a constant number of copies stored in distinct modules. We show thatN processors, directly accessing the memories through a complete interconnection, can read/write any set ofN variables in worst-case timeO (N 1/3),O(N 1/2), andO(N 2/3), respectively for the three schemes. The access times for the last two schemes are optimal with respect to the particular redundancy values used by such schemes. The address computation can be carried out efficiently by each processor without recourse to a complete memory map and requiring onlyO(1) internal storage. This paper was partially supported by NFS Grants CCR-91-96152 and CCR-94-00232, by ONR Contract N00014-91-J-4052, ARPA Order 8225, and by the ESPRIT III Basic Research Programme of the EC under Contract No. 9072 (Project GEPPCOM). Results reported here were presented in preliminary form at the 10th Symposium on Theoretical Aspects of Computer Science (Würzburg, Germany, 1993), and at the 5th ACM Symposium on Parallel Algorithms and Architectures (Velen, Germany, 1993).  相似文献   

18.
We present a randomized algorithm for computing the kth smallest distance in a set ofn points in the plane, based on the parametric search technique of Megiddo [Mel]. The expected running time of our algorithm is O(n4/3 log8/3 n). The algorithm can also be made deterministic, using a more complicated technique, with only a slight increase in its running time. A much simpler deterministic version of our procedure runs in time O(n3/2 log5/2 n). All versions improve the previously best-known upper bound ofO(@#@ n9/5 log4/5 n) by Chazelle [Ch]. A simpleO(n logn)-time algorithm for computing an approximation of the median distance is also presented.Part of this work was done while the first two authors were visting DIMACS, Rutgers University, New Brunswick, NJ. Work by the first three authors has been partly supported by Office of Naval Research Grant N00014-87-K-0129, by National Science Foundation Grant DCR-83-20085, and by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center-NSF-STC88-09648. Work by the second author has also been supported by National Security Agency Grant MDA 904-89-H-2030. Work by the third author has also been supported by National Science Foundation Grant CCR-89-01484, and by grants from the U.S.-Israeli Binational Science Foundation, and the Fund for Basic Research administered by the Israeli Academy of Sciences.  相似文献   

19.
In computational geometry many search problems and range queries can be solved by performing an iterative search for the same key in separate ordered lists. In this paper we show that, if these ordered lists can be put in a one-to-one correspondence with the nodes of a graph of degreed so that the iterative search always proceeds along edges of that graph, then we can do much better than the obvious sequence of binary searches. Without expanding the storage by more than a constant factor, we can build a data-structure, called afractional cascading structure, in which all original searches after the first can be carried out at only logd extra cost per search. Several results related to the dynamization of this structure are also presented. A companion paper gives numerous applications of this technique to geometric problems.The first author was supported in part by NSF grants MCS 83-03925 and the Office of Naval Research and the Defense Advanced Research Projects Agency under contract N00014-83-K-0146 and ARPA Order No. 4786. Part of this work was done while the second author was employed by the Xerox Palo Alto Research Center.  相似文献   

20.
We give the first linear-time algorithm for computing single-source shortest paths in a weighted interval or circular-arc graph, when we are given the model of that graph, i.e., the actual weighted intervals or circular-arcsand the sorted list of the interval endpoints. Our algorithm solves this problem optimally inO(n) time, wheren is the number of intervals or circular-arcs in a graph. An immediate consequence of our result is anO(qn + n logn)-time algorithm for the minimum-weight circle-cover problem, whereq is the minimum number of arcs crossing any point on the circle; then logn term in this time complexity is from a preprocessing sorting step when the sorted list of endpoints is not given as part of the input. The previously best time bounds were0(n logn) for this shortest paths problem, andO(qn logn) for the minimum-weight circle-cover problem. Thus we improve the bounds of both problems. More importantly, the techniques we give hold the promise of achieving similar (logn)-factor improvements in other problems on such graphs.The research of M. J. Atallah was supported in part by the Leonardo Fibonacci Institute, Trento, Italy, by the Air Force Office of Scientific Research under Contract AFOSR-90-0107, and by the National Science Foundation under Grant CCR-9202807. D. Z. Chen's research was supported in part by the Leonardo Fibonacci Institute, Trento, Italy. The research of D. T. Lee was supported in part by the Leonardo Fibonacci Institute, Trento, Italy, by the National Science Foundation, and the Office of Naval Research under Grants CCR-8901815, CCR-9309743, and N00014-93-1-0272.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号