首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a simple orthogonal space-time block coding (OSTBC) technique for continuous-phase modulation (CPM). Although the straightforward combination of orthogonal designs (ODs) and CPM was deemed impossible in X. Zhang and M.P. Fitz (2003) G. Wang and X-G Xia (2004) we show that this is easily accomplished with a burst-based approach. In fact, using the proposed technique ODs can be combined with any CPM scheme. After an appropriate ST combining at the receiver, the same detection techniques as in case of single-antenna transmission can be applied. This is a significant advantage over previously proposed ST coding schemes for CPM. We also derive accurate approximations for the bit error rate and the frame error rate of CPM with OSTBC. Both analysis and simulations show in good agreement the excellent performance of the proposed scheme  相似文献   

2.
Space–time (ST) coding is a proved technique for achieving high data rates in 3G mobile systems that combines coding, modulation and multiple transmitters and receivers. A novel algorithm is proposed for ST ring trellis‐coded modulation (ST‐RTCM) systems with continuous‐phase modulation (CPM) when the channel coefficients are known to the receiver. This algorithm is based on the CPM decomposed model, which exploits the memory properties of this modulation method, resulting in a straightforward implementation of joint ST coding and CPM, which is particularly suitable for ring codes. This new scheme is used to investigate the performance of the delay diversity code with CPM over slow Rayleigh fading channels, in particular with MSK which is one of the most widely used modulation methods of continuous phase. Furthermore, a feedback version of delay diversity allowed by the decomposition is tested in 1REC and 1RC systems. This feedback configuration is seen to provide good results for low signal‐to‐noise ratios. Simulations results are also provided for multilevel ST‐RTCM codes that achieve a higher throughput than MSK‐coded systems. Additionally the serial concatenation of an outer Reed–Solomon code with an ST‐RTCM code is shown, this combination further reduces the error probability and achieves even more reliable communications. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
A sequence estimation algorithm for the differential detection of the continuous phase modulation (CPM) signals, yielding significant gains in BER performance and with considerable resistivity to fading, is introduced. These advantages, along with the reduced hardware complexity, low cost, and fast synchronization which characterize the differential detector, make the proposed receiver useful for land mobile radio and mobile-satellite communications. The new receiver is based on multiple differential detection. The multiple differential detection strategy provides the decoder with more information regarding the transmitted data and applies a noise decorrelation process on the received signal, useful to the sequence estimation. The algorithm is derived in a general form, and can be applied on any CPM scheme, with any degree of complexity. The authors have evaluated the receiver for two of the most popular CPM schemes, the tamed frequency modulation (TFM) and Gaussian minimum-shift keying (GMSK) (with B1 T=0.25), in the presence of additive white Gaussian noise (AWGN) and Rician fading. The BER performance evaluation results indicated significant gains and considerable reduction of error floors. In AWGN improvements close to 9 dB have been verified  相似文献   

4.
Differential detection techniques, which are commonly used in fast fading environments, are characterized by an irreducible error rate that increases with fading rate. The main source of this error floor is the phase error introduced by the multiplicative fading process. The paper describes a detection technique for continuous phase modulation (CPM) that employs decision feedback carrier recovery and adaptive channel estimation. This receiver was evaluated by software simulation and the results show a substantial reduction of the error floor relative to that of differential detection. Furthermore, in additive white Gaussian noise (AWGN) channels, the adaptive nature of the receiver allows it to perform close to ideal coherent detection of differentially encoded phase shift keying (DE-CPSK)  相似文献   

5.
Interleaved trellis-coded systems with full response continuous-phase modulation (CPM) are considered. Upper bounds on the bit-error rate performance are derived for coherent detection on the additive white Gaussian noise and flat Rayleigh fading channels by considering the trellis code, interleaver, and CPM modulator as a serially concatenated convolutional code. A coherent receiver that performs iterative demodulation and decoding is shown to provide good bit error performance. Finally, a noncoherent iterative receiver is proposed and is shown to perform close to the coherent iterative receiver  相似文献   

6.
A method for the sequential updating of log-likelihood functions for maximum-likelihood sequence estimation is presented. It is shown that, in a general case, this method can be implemented using Kalman filtering techniques. For the special case of Rayleigh flat fading and continuous phase modulation (CPM) signaling, this approach is shown to lead to an attractive receiver structure. This type of receiver, called the linear predictive receiver, can be implemented in the form of the Viterbi algorithm with the trellis updates being computed using a bank of finite pulse response (FIR) filter and square operations. Simulation results are presented that demonstrate the superiority of the linear predictive receiver over receivers employing differential detection, in the presence of fast fading. It is shown that the optimal linear predictive receiver does not possess an irreducible error rate for a class of Rayleigh fading channels used to model terrestrial mobile channels  相似文献   

7.
A communication scheme based on continuous-phase modulated (CPM) signals used in conjunction with trellis-coded modulation (TCM) is considered. To keep the complexity manageable, a detection scheme based on differential detection of CPM signals is used. Methods that estimate the Doppler-induced frequency shift from the receiver signal are studied. Since differential detection transforms a frequency shift into a phase shift, the phase estimation problem is examined first. Three Doppler frequency estimation schemes that are based on open-loop structures and that are designed to achieve different ranges of Doppler frequencies that can be estimated are introduced. These estimators show different degrees of complexity and (at least for high signal-to-noise ratios) significantly different estimation errors. Their performance is compared by using a simulation approach  相似文献   

8.
We present a coherent detection technique for continuous phase modulation (CPM) operating in the Rayleigh flat fading channel. The technique is based on the idea of inserting periodically data dependent pilot symbols that force the CPM signal to pass through known phase states. This transmission format enables the receiver to extract from the received signal the channel fading gains at regularly spaced instants. When coupled with proper channel estimation filters, very accurate channel state information (CSI) can be estimated at the receiver for fading compensation. Moreover, the accuracy of the CSI can be further refined by adopting a multiple-pass decoding approach. The paper discusses (a) the pilot symbol encoding technique required to force a M-level CPM scheme with a modulation index of p/M, p is an integer, to return periodically to a set of known phase states, (b) the optimal channel estimation filters, (c) a trellis-based precoding technique that can reduce the bit error rate in M-level CPM systems by close to 50%, and (d) a multiple-pass channel estimator/demodulator. Analytical and simulation results are presented for minimum shift keying (MSK), Gaussian MSK, and four-level continuous phase frequency shift keying with a modulation index of 1/4. It is observed that our pilot symbol-assisted CPM schemes exhibit no irreducible error floor even at a channel fade rate of three percent the symbol rate. The implicit phase coding in CPM and the accurate CSI provided by the pilot symbols lead to a diversity effect in the bit error rate curves of these modulation schemes  相似文献   

9.
In this paper, a new data-aided linear prediction receiver for coherent differentially encoded phase-shift keying (DPSK) and coherent continuous phase modulation (CPM) over Rayleigh flat-fading channels is presented, This receiver uses the previously detected symbols to estimate the carrier-phase reference and predict the channel gain continuously and therefore makes the optimal coherent detection of DPSK and CPM. The receiver has a simple structure and can be implemented easily. This is due partly to the fact that the linear predictors used for channel estimation do not depend on the autocorrelation function of the fading process. Simulation results on the bit error performance of QDPSK and minimum-shift keying (MSK) with the new receiver are given for both the additive white Gaussian noise (AWGN) and the Rayleigh flat-fading channels. The results show that the proposed receiver provides almost the same bit error rate (BER) performance as the ideal coherent receiver in an AWGN channel, is very robust against large carrier frequency offset between transmitter and receiver, and can provide a reasonably good BER performance in a fast Rayleigh fading channel. Finally, a multisample receiver is discussed and its error rate performance is evaluated by means of computer simulations. The results show that the multisample receiver provides good BER performance for higher fading rate  相似文献   

10.
This correspondence studies receive antenna selection (AS) for multiple-antenna systems that employ unitary space-time (ST) signals, where the channel state information (CSI) is known neither at the transmitter nor at the receiver. Without CSI at the receiver, we perform AS only at the receiver and the selection is based on a maximum-norm criterion, i.e., a subset of receive antennas that have the largest received signal power is chosen. Using a Chernoff bound approach, we present theoretical performance analysis based on the pairwise error probability (PEP) and quantify the asymptotic performance at high signal-to-noise ratio (SNR) by giving the diversity and coding gain expressions. We prove that with no CSI at the receiver, the diversity gain with AS is preserved for unitary ST codes with full spatial diversity, the same as the case with known CSI. As a concrete example, for differential unitary ST modulation with M=2 transmit antennas and N=2 receive antennas, we have devised new excellent-performing parametric codes based on the derived PEP bound. The new codes, which are specifically designed for differential AS systems, outperform known differential codes when AS is employed. Corroborating simulations validate our analysis and code design.  相似文献   

11.
The authors consider a communication scheme based on continuous phase modulated (CPM) signals used in conjunction with trellis-coded modulation (TCM) for transmission over a channel affected by Gaussian noise and fading. This scheme provides a power saving due to the coding gain of TCM and a reduced bandwidth occupancy due to the features of CPM signals. Moreover, CPM provides constant-envelope signals. To keep the complexity of the receiver manageable and to be able to use interleaving/deinterleaving techniques to spread the fade bursts, suboptimal detection schemes must be used. Two such schemes, based on coherent and noncoherent detection of CPM, are considered. Their performance is evaluated by computing the computational cutoff rate of the discrete channel generated by CPM  相似文献   

12.
We consider continuous phase modulations (CPMs) in iteratively decoded serially concatenated schemes. Although the overall receiver complexity mainly depends on that of the CPM detector, almost all papers in the literature consider the optimal maximum a posteriori (MAP) symbol detection algorithm and only a few attempts have been made to design low-complexity suboptimal schemes. This problem is faced in this paper by first considering the case of an ideal coherent detection, then extending it to the more interesting case of a transmission over a typical satellite channel affected by phase noise. In both cases, we adopt a simplified representation of an M-ary CPM signal based on the principal pulses of its Laurent decomposition. Since it is not possible to derive the exact detection rule by means of a probabilistic reasoning, the framework of factor graphs (FGs) and the sum-product algorithm (SPA) is used. In the case of channels affected by phase noise, continuous random variables representing the phase samples are explicitly introduced in the FG. By pursuing the principal approach to manage continuous random variables in a FG, i.e., the canonical distribution approach, two algorithms are derived which do not require the presence of known (pilot) symbols, thanks to the intrinsic differential encoder embedded in the CPM modulator.  相似文献   

13.
Continuous Phase Modulation of F-QPSK-B Signals   总被引:1,自引:0,他引:1  
A continuous phase modulation (CPM) implementation alternative of a recently standardized class of Feher-patented quadrature phase-shift keying (F-QPSK-B) modulation is proposed. Based on the fact that the F-QPSK-B signal has a quasi-constant envelope and continuous phase characteristics, it is shown that it can indeed be generated by the CPM scheme. For example, an F-QPSK-B signal can be fully generated using an existing FM-based transmitter with a modulation index of 0.5. Furthermore, a premodulation filter and an alternating change monitor differential encoder for the continuous-phase-modulated F-QPSK-B signal to be fully compatible with the I/Q modulated F-QPSK-B signal are proposed, allowing direct symbol-by-symbol coherent detection without the use of any special decoding schemes inherent in all CPM schemes. It is shown that the power spectral density and eye diagram of the continuous-phase-modulated F-QPSK-B signal are practically the same as those of the I/Q modulated F-QPSK-B signal. By utilizing CPM characteristics, an optimum maximum-likelihood (ML) coherent receiver for the F-QPSK-B signal is proposed. It is shown that the bit-error-rate performances of the optimum ML coherent detection, symbol-by-symbol coherent detection, and noncoherent detection of the continuous-phase-modulated F-QPSK-B signal are almost the same as those of the I/Q modulated F-QPSK-B signal  相似文献   

14.
In this paper, a doubly iterative receiver is proposed for joint turbo equalization, demodulation, and decoding of coded binary continuous-phase modulation (CPM) in multipath fading channels. The proposed receiver consists of three soft-input soft-output (SISO) blocks: a front-end soft-information-aided minimum mean square error (MMSE) equalizer followed by a CPM demodulator and a back-end channel decoder. The MMSE equalizer, combined with an a priori soft-interference canceler (SIC) and an a posteriori probability mapper, forms a SISO processor suitable for iterative processing that considers discrete-time CPM symbols which belong to a finite alphabet. The SISO CPM demodulator and the SISO channel decoder are both implemented by the a posteriori probability algorithm. The proposed doubly iterative receiver has a central demodulator coupled with both the front-end equalizer and the back-end channel decoder. A few back-end demodulation/decoding iterations are performed for each equalization iteration so as to improve the a priori information for the equalizer. As presented in the extrinsic information transfer (EXIT) chart analysis and simulation results for different multipath fading channels, this provides not only faster convergence to low bit error rates, but also lower computational complexity.  相似文献   

15.
We consider noncoherent block detection of Alamouti-type space-time (ST) modulations, employing PSK constellations in quasi-static Rayleigh-fading channels with L receive antennas. The proposed detector, termed an eigen-assisted (EA) receiver, constructs a sample-correlation matrix from the L length-N received signals, determines its two principal eigenvectors, and uses these eigenvectors to reconstruct the two transmitted length-N patterns. Scalar differential encoding is performed at the transmit antennas, and as a result, the transmitted data can be recovered from the reconstructed patterns using scalar multiple-symbol differential detection. In other words, ST-differential encoding is not required at the transmitter and the constellation expansion typically observed with nonbinary signaling is avoided; a highly desirable result under a peak power constraint. Furthermore, the performance of the proposed EA-receiver is only 0.25 dB away from the coherent detection (with differential encoding) lower bound for the modulations considered. For quadrature phase-shift keying at a bit-error rate of 10/sup -4/, our EA-receiver with N=64 outperforms a decision feedback detector by 1 dB (L=1) and conventional ST-differential detection by more than 2.5 dB (L=2). Note that the complexity of our receiver, per symbol decision, is essentially independent of N and is comparable to that of a conventional ST-differential detector. The conclusion is reached that the proposed encoder/receiver pair is a promising alternative to currently known noncoherent techniques employing Alamouti-type ST-modulations.  相似文献   

16.
基于CPM的部分带干扰抑制技术   总被引:1,自引:0,他引:1  
提出了一种空时编码慢跳频连续相位调制(CPM)系统用于抗部分带噪声干扰。由于CPM信号的内在记忆性,传统的检测方法复杂度较高,结合Laurent分解和差分预编码方法部分消除了CPM信号的内在记忆性,提出了一种软输入软输出的线性接收机,联合信道译码进行迭代检测,大大降低了接收机的复杂度并且提高了系统的抗干扰性能。最后,利用迭代干扰状态信息(JSI)估计,进一步改善了系统的抗干扰性能。  相似文献   

17.
Space-time coding has shown great promise for digital transmission in wireless communication links, especially when the channel response is known at the receiver. Space time coding combined with continuous phase modulation (CPM) can offer better tradeoffs in bandwidth and power efficiency. Because of the memory inherent in CPM, channel estimation is often harder than for linear modulations. We present an adaptive soft algorithm that performs joint channel estimation and data detection for space-time CPM systems. Properly designed pilot symbols are inserted at the very beginning to give good initial estimates of the channels. This soft receiver is further applied to the interleaved space-time CPM system to yield better performance with moderate complexity through iterative processing. Simulation results show that the receiver can often achieve near-coherent performance in quasistatic fading as well as in time-varying fading.  相似文献   

18.
Coded and uncoded modulation schemes based on continuous phase modulation (CPM) over rings of integers are investigated. A baseband modulator utilising a decomposed model of CPM is used at the transmitter and a Viterbi soft-decision decoder is employed at the receiver. The performances of a number of partial-response CPM schemes are investigated when operating over an additive white Gaussian noise (AWGN) channel and Rayleigh flat fading (RFF) channel. The simulation results obtained are shown to compare favourably with theoretical bounds  相似文献   

19.
We present two multilevel constant-envelope continuous-phase modulation (CPM) schemes with four-dimensional (4-D) trellis coding. The receiver is composed of a simple quadrature demodulator, followed by a symbol-rate sampler and a Viterbi decoder matched to the code trellis. The first modulation is a quaternary CPM scheme whose phase transitions over a symbol interval are those of π/4-shift quaternary phase-shift keying (QPSK). The demodulator filter is optimized so as to minimize the combined effect of intersymbol interference (ISI) and noise at the decision instants. We use Wei's (1987) 16-state 4-D trellis code, and redefine the set partitioning tree so as to maintain the same minimum distance between parallel transitions as in quadrature amplitude modulation (QAM) signal sets. The resulting modulation outperforms minimum-shift keying (MSK) by as much as 3.5 dB, in addition to reducing the 30-dB signal bandwidth by 20%. Next, we introduce an octonary (8-level) CPM scheme whose phase transitions are those of π/8-shift 8PSK. The same trellis code and receive filter optimization are also applied to this modulation which is shown to achieve better error rate performance than MSK, while saving some 60% of the transmitted signal bandwidth  相似文献   

20.
The maximum-likelihood sequence estimator (MLSE) for continuous phase modulation (CPM) signals in an additive white Gaussian noise (AWGN) channel is a very efficient method of detection. This paper describes an extension of a relatively simple crosstalk approach for the performance analysis of linear quadrature receivers with cochannel interference (CCI) and adjacent channel interference (ACI) present to the MLSE receiver. Many CPM signals are analyzed, including those using new baseband modulating pulses. One of the new schemes allows an ACI signal to be 62 dB greater than the desired user signal at a frequency separation of one-and-a-half times the bit rate, with just a 2-dB degradation in required Eb/N0  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号