首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
GaSb bulk single crystals with low acceptor concentration were grown from a bismuth solution by the traveling heater method. The result is isoelectronic doping by Bi which gives a variation of the opto-electronic properties as a function of grown length as well as a pronounced microscopic segregation. Photoluminescence spectra at 4K show a decrease of the natural acceptor during growth, which is confirmed by Hall measurements. The electrical properties of this isoelectronic doped GaSb are hole concentrations and mobilities of NA − ND = 1.7 × 1016 cm−3 and μ = 870 cm2Vs at room temperature and NA-ND = 1 × 1016 cm−3 and μ = 4900 cm2/Vs at 77K, respectively. The lowest p-type carrier concentration measured at 300K is NA − ND = 3.3 × 1015 cm−3  相似文献   

2.
Terahertz (THz) radiation from InAs thin films grown by molecular-beam epitaxy on closely lattice-matched p-type GaSb (100) substrates and lattice-mismatched semi-insulating GaAs (100) substrates was investigated. The THz radiation intensity was measured from InAs films with thicknesses between 100 nm and 1.5 μm excited by a femtosecond laser pulse with a wavelength of approximately 780 nm. The radiation intensity increased as the InAs film thickness increased and it exceeded that from a bulk n-type InAs substrate with an electron concentration of 2.3 × 1016 cm−3 when the InAs film thickness was greater than about 500 nm. In addition, the THz intensity from a 1-μm-thick InAs film was greater than that from a bulk p-type InAs substrate. We ascribe this enhanced THz intensity to the wave reflected from the lower interface between the InAs film and the layer grown beneath it. We confirmed this by observing an increased pulse width due to constructive overlap of the reflected wave. The results demonstrate that InAs thin films are promising materials for THz emitting devices.  相似文献   

3.
Low-temperature mobilities in InAs-AlSb quantum wells depend sensitively on the buffer layer structures. Reflection high energy electron diffraction and x-ray diffraction show that the highest crystalline quality and best InAs transport properties are obtained by a buffer layer sequence GaAs → AlAs → AlSb → GaSb, with a final GaSb layer thickness of at least 1 μm. Using the improved buffer scheme, mobilities exceeding 600,000 cm2/Vs at 10 K are routinely obtained. Modulation δ-doping with tellurium has yielded electron sheet concentrations up to 8 × 1012 cm−2 while maintaining mobilities approaching 100,000 cm2/Vs at low temperatures.  相似文献   

4.
For the first time, InGaSb single crystals with a cutoff wavelength of 7–8 μm were successfully grown on GaAs substrates by a new growth technique named melt epitaxy. The band gap of InGaSb layers obviously narrowed compared with those with the same compositions grown by ordinary methods and the longest cutoff wavelength reached 8.3 μm. High electron mobility of 8.05×104 cm2/Vs and low carrier density of 1×1015 cm−3 at 77 K were obtained indicating high purity of InGaSb epilayers.  相似文献   

5.
N-type Hg1−xCdxTe layers with x values of 0.3 and 0.7 have been grown by molecular beam epitaxy using iodine in the form of CdI2 as a dopant. Carrier concentrations up to 1.1 × 1018 cm−3 have been achieved for x = 0.7 and up to 7.6 × 1017 cm−3 for x=0.3. The best low temperature mobilities are 460 cm2/(Vs) and 1.2 × 105 cm2/(Vs) for x=0.7 and x=0.3, respectively. Using CdI2 as the dopant modulation doped HgTe quantum well structures have been grown. These structures display very pronounced Shubnikov-de Haas oscillations and quantum Hall plateaus. Electron densities in the 2D electron gas in the HgTe quantum well could be varied from 1.9 × 1011 cm−2 up to 1.4 × 1012 cm−2 by adjusting the thicknesses of the spacer and doped layer. Typical mobilities of the 2D electron gas are of the order of 5.0 × 104 cm2/(Vs) with the highest value being 7.8 × 104 cm2/(Vs).  相似文献   

6.
This paper presents transport measurements on both vacancy doped and gold doped Hg0.7Cd0.3Te p-type epilayers grown by liquid phase epitaxy (LPE), with NA=2×1016 cm−3, in which a thin 2 μm surface layer has been converted to n-type by a short reactive ion etching (RIE) process. Hall and resistivity measurements were performed on the n-on-p structures in van der Pauw configuration for the temperature range from 30 K to 400 K and magnetic field range up to 12 T. The experimental Hall coefficient and resistivity data has been analyzed using the quantitative mobility spectrum analysis procedure to extract the transport properties of each individual carrier contributing to the total conduction process. In both samples three distinct carrier species have been identified. For 77 K, the individual carrier species exhibited the following properties for the vacancy and Au-doped samples, respectively, holes associated with the unconverted p-type epilayer with p ≈ 2 × 1016 cm−3, μ ≈ 350 cm2V−1s−1, and p ≈ 6 × 1015 cm−3, μ ≈ 400 cm2V−1s−1; bulk electrons associated with the RIE converted region with n ≈ 3 × 1015cm−3, μ ≈ 4 × 104 cm2V−1s−1, and n ≈ 1.5 × 1015 cm−3, μ ≈ 6 × 104 cm2V−1s−1; and surface electrons (2D concentration) n ≈ 9 × 1012 cm−2 and n ≈ 1 × 1013 cm−2, with mobility in the range 1.5 × 103 cm2V−1s−1 to 1.5 × 104 cm2V−1s−1 in both samples. The high mobility of bulk electrons in the RIE converted n-layer indicates that a diffusion process rather than damage induced conversion is responsible for the p-to-n conversion deep in the bulk. On the other hand, these results indicate that the surface electron mobility is affected by RIE induced damage in a very thin layer at the HgCdTe surface.  相似文献   

7.
Lattice-matched Ga0.47ln0.53As/InP heterostructure was grown by atmosphericpressure metalorganic vapor phase epitaxy reaction system using monovalent cyclopentadienyl indium. The lattice-matched heterostructure showed electron mobilities ofμ300K= 12700 cm2/Vs at n8= 4.2 x 1011 cm-2 and μ77K= 108000 cm2/Vs at n8 = 3.9 x 1011 cm-2. The uniformity in electrical properties was measured by Hall element array with 400 μm pitch. Coefficient of variation in electron mobility was 0.18%.  相似文献   

8.
The organometallic vapor phase epitaxy of HgCdTe onto (100)2°-(110) GaAs substrates is described in this paper. A buffer layer of CdTe has been grown prior to the growth of HgCdTe, to take up the large lattice mismatch with the GaAs. Considerations for the thickness of this buffer layer are outlined, and it is shown by quantitative Secondary Ion Mass Spectroscopy that there is negligible diffusion of gallium from the GaAs substrate for the growth conditions described. Hall effect measurements give mobilities comparable to those reported for bulk grown crystals. An extrinsicn-type carrier concentration of 2 × 1016/cm3 is obtained, and is mainly due to residual impurities in the starting chemicals. The alloy composition has been determined at 298 K by Fourier transform infrared transmission (FTIR) spectrometry; this is found to be extremely uniform over a 15 × 7 mm area, as evidenced by an overlapping of FTIR plots taken over this area. HgCdTe layers have been grown on buffer layers varying in thickness from 0.1 to 1.9μm. It is found that a buffer thickness of about 1.9μm or larger is required to obtain high quality HgCdTe, both in terms of the electrical characteristics (mobility and carrier concentration) and the infrared transmission curves (peak transmission).  相似文献   

9.
We report studies of InN grown by plasma-assisted molecular beam epitaxy. GaN templates were first grown on sapphire substrates followed by InN overgrown at 457°C to 487°C. Atomic force microscopy shows the best layers to exhibit step-flow growth mode of the InN, with a root-mean-square roughness of 0.7 nm for the 2 μm × 2 μm scan and 1.4 nm for the 5 μm × 5 μm scan.␣Measurements of the terrace edges indicate a step height of 0.28 nm. Hall measurements at room temperature give mobilities ranging from 1024 cm2/V s to 1904 cm2/V s and the electron concentrations are in the range of 5.9 × 1017 cm−3 to 4.2 × 1018 cm−3. Symmetric and asymmetric reflection x-ray diffraction measurements were performed to obtain lattice constants a␣and c. The corresponding hydrostatic and biaxial stresses are found to range from −0.08 GPa to −0.29 GPa, and −0.05 GPa to −0.32 GPa, respectively. Low-temperature photoluminescence peak energies range from 0.67 eV to 0.70 eV, depending on residual biaxial stress, hydrostatic pressure, and electron concentrations. The electron concentration dependence of the estimated Fermi level is analyzed using Kane’s two-band model and conduction-band renormalization effects.  相似文献   

10.
We use the Hall effect and a new charge-transfer technique to study molecular beam epitaxial GaAs grown at the low substrate temperatures of 300–450°C. Layers grown from 350–450°C are semi-insulating (resistivity greater than 107 Ω-cm), as grown, because of an AsGa-related donor (not EL2) at EC-0.65 eV. The donor concentrations are about 2×1018 cm−3 and 2×1017 cm−3 at growth temperatures of 300 and 400°C, respectively, and acceptor concentrations are about an order of magnitude lower. Relatively high mobilities (∼5000 cm2/V s) along with the high resistivities make this material potentially useful for certain device applications.  相似文献   

11.
We have investigated, as a function of indium content x, the galvanomagnetic and Shubnikov de Haas (SdH) properties of two-dimensional electron gases (2DEG) formed at lattice matched, strain relaxed InAlAs/InGaAs heterojunctions. These were grown by molecular beam epitaxy on GaAs misoriented substrates with a two degree offcut toward the nearest (110) plane. Variable temperature resistivity and Hall measurements indicate an increase in the electron sheet density ns from 0.78×1012cm−2 for x=0.15 to 1.80×1012 cm−2 for x=0.40 at 300K, and from 0.75×1012cm−2 to 1.67×1012cm−2 at T=1.6K. The room temperature electron mobility, measured along the in plane [110], direction is independent of indium content and equals approximately 9500 cm2/Vs. For T<50K, the mobility is independent of temperature decreasing with increasing x from 82000 cm2/Vs for x=0.15 to 33000 cm2/Vs for x=0.40. The ratios (τtq) at 1.6K between the electron relaxation time τt and the single particle relaxation time τq, for the strain relaxed specimens, as well as for pseudomorphically strained Al0.35Ga0.65As/In0.15Ga0.85As structures grown on GaAs substrates, and In0.52Al0.48As/In0.53Ga0.47As heterostructures grown lattice matched on InP substrates. Such a study indicates the presence of inhomogeneities in the 2DEGs of the strain relaxed specimens which appear to be related to the process of strain relaxation. Such inhomogeneities, however, have little effect on the electron relaxation time τt which, at low temperatures, is limited principally by alloy scattering.  相似文献   

12.
We have studied the growth of AlxGa1−xAs (0.24<x<0.34) using a N2 carrier in low pressure metalorganic vapor phase epitaxy. Growth temperature, gas velocity, and V/III ratio were varied to achieve optimum growth conditions. Layers with excellent morphology and electrical and optical properties comparable to samples grown using standard conditions (with a H2 carrier) can be deposited in a nitrogen ambient. Al0.24Ga0.76As bulk material grown on an AlAs buffer layer with a background doping of 1.3×1016 cm−3 showed Hall mobilities of 4500 and 2300 cm2/Vs at 77 and 300K. Photoluminescence studies at 2K revealed strong bound exciton transitions with a full width at half maximum of 5.2 meV for Al0.29Ga0.71AS.  相似文献   

13.
Dong  H. K.  Li  N. Y.  Tu  C. W.  Geva  M.  Mitchel  W. C. 《Journal of Electronic Materials》1995,24(2):69-74
The growth of GaAs by chemical beam epitaxy using triethylgallium and trisdimethylaminoarsenic has been studied. Reflection high-energy electron diffraction (RHEED) measurements were used to investigate the growth behavior of GaAs over a wide temperature range of 300–550°C. Both group III- and group Vinduced RHEED intensity oscillations were observed, and actual V/III incorporation ratios on the substrate surface were established. Thick GaAs epitaxial layers (2–3 μm) were grown at different substrate temperatures and V/III ratios, and were characterized by the standard van der Pauw-Hall effect measurement and secondary ion mass spectroscopy analysis. The samples grown at substrate temperatures above 490°C showed n-type conduction, while those grown at substrate temperatures below 480°C showed p-type conduction. At a substrate temperature between 490 and 510°C and a V/III ratio of about 1.6, the unintentional doping concentration is n ∼2 × 1015 cm−3 with an electron mobility of 5700 cm2/V·s at 300K and 40000 cm2/V·s at 77K.  相似文献   

14.
Thin films of InAs have been deposited on mica substrates through a vacuum evaporation technique by means of controlling the substrate and source temperatures. The films with large crystal grain were found to have the best electrical properties. The maximum electron mobility of 12, 400 cm2/V·sec at room temperature was obtained in an undoped film of 3 Μm thickness at a donor concentration of 3.5 × 1016 cm−3. The temperature dependence of both electron mobility and resistivity of these films was slightly lower than those reported for bulk crystal type InAs.  相似文献   

15.
The growth of bulk indium phosphide crystals via liquid encapsulated Czochralski pulling from both stoichiometric and nonstoichiometric melts is described. Nominally un-doped crystals with carrier concentration ND-NA = 6 × 1015 cm−3 and Hall mobilities of 4510 cm2/Vsec at room temperature were grown. Also, we prepared Zn-or Cd-doped p-type crystals in the range 1016 ≤ NA-ND ≤ 1018 cm−3 with Hall mobilities ≤ 130 cm2/Vsec and Sn-doped n-type crystals in the range 4 × 1017 ≤ NA-ND ≤ 1018 cm-3 with Hall mobilities ≤ 2400 cm2/Vsec. The dislocation density of LEC pulled InP crystals is typically ~ 104 cm−2.  相似文献   

16.
Large SnSe single crystals of high metallurgical quality have been grown by a closed tube vapor phase technique. Hall measurements on annealed and quenched samples were performed to establish the stability range of the compound. The crystals are p-type with hole concentrations between 3 × 1015 and 2 × 1018 cm−3 and mobilities up to 7 × 103 cm /Vs at 77 K.  相似文献   

17.
The effect of the growth temperature on the quality of InP grown by chemical beam epitaxy (CBE) using ethyldimethylindium (EDMIn) and bisphos-phinoethane (BPE) are presented. The growth rate was nearly independent of growth temperature, BPE flow rate, and cracker cell temperature in the range from 700 to 900°C. Smooth and mirror-like surfaces were obtained for all of the samples grown at temperatures above 465°C. All of the InP samples were n-type. As the growth temperature increased, the net carrier concentration decreased and reached a minimum value of 3.2× 1015 cm−3 at 485°C. The electron mobility increased with increasing growth temperature, reaching values of 3630 and 21800 cm2/Vs at 300 and 77K, respectively. The photoluminescence was found to depend strongly on the growth temperature. Excitonic luminescence was detected only for growth temperatures above 465°C. The intensity of the band edge emission is comparable to that of the acceptor related emission for layers grown at 465°C. At 485°C, the band-edge recombination is dominant and the acceptor related emission is barely observable. As the growth temperature increased from 465 to 485°C, the full width at half maximum of the bound exciton peak decreased from 6.8 to 3.5 meV at 14K. This trend was consistent with the decrease in the impurity concentration deduced from the Hall effect measurements.  相似文献   

18.
The structural, electrical, and optical properties of GaN grown on 6H-SiC(0001) substrates by molecular beam epitaxy are studied. Suitable substrate preparation and growth conditions are found to greatly improve the structural quality of the films. Threading dislocation densities of about 3×109 cm−2 for edge dislocations and <1×106 cm−2 for screw dislocations are achieved in GaN films of 0.8 μm thickness. Mechanisms of dislocation generation and annihilation are discussed. Increasing the Ga to N flux ratio used during growth is found to improve the surface morphology. An unintentional electron concentration in the films of about 5×1017 cm−3 is observed, and is attributed to excess Si in the films due to a Si-cleaning step used in the substrate preparation. Results from optical characterization are correlated with the structural and electronic studies.  相似文献   

19.
Highly conductivep-type ZnSe layers have been grown on GaAs substrates by vapor phase epitaxy in an open system. Iodine and hydrogen were used as transport agents. The ZnSe layers exhibited a conductivity up to 50 (Ωcm)−1 and a carrier concentration of 4 × 1018 cm−3 together with a Hall mobility of 100 cm2/Vs. These values are the highest ones reported so far. Low-temperature photoluminescent spectra indicated new bound excitons. Electroluminescent metal/p-ZnSe/n-GaAs heterojunctions exhibited blue emission at 2.68 eV dominating the spectra.  相似文献   

20.
High quality GaxIn1−xAs, lattice matched to InP, has been reproducibly grown by organometallic vapor phase epitaxy using trimethylgallium (TMGa), trimethylindium (TMIn), and AsH3 in an atmospheric pressure reactor with no observable adduct formation. For the first time, using TMIn, room temperature electron mobilities of 104 cm2/Vs and 77 K mobilities greater than 4 × 104 cm2/Vs have beep obtained. Residual donor doping densities in the low 1015 cm−3 range have been routinely obtained. Material with excellent morphology has been grown from 540 to 670 C with the highest quality material being obtained near 650 C. The 4 K photoluminescence (PL) peak due to carbon is not seen in the material grown at higher temperatures; however, it increases dramatically as the growth temperature is lowered. This increased carbon incorporation leads to a sharp drop in the electron mobility, which exhibits a T−0.5 behavior between 77 and 300 K. With optimum growth conditions, 4 K PL halfwidths of 4–5 meV are commonly observed. This high quality material is characterized by x-ray diffraction, PL, and Hall mobility measurements. Carbon and other impurity incorporation as a function of the growth parameters will be described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号