首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 454 毫秒
1.
Rateless Codes With Unequal Error Protection Property   总被引:2,自引:0,他引:2  
In this correspondence, a generalization of rateless codes is proposed. The proposed codes provide unequal error protection (UEP). The asymptotic properties of these codes under the iterative decoding are investigated. Moreover, upper and lower bounds on maximum-likelihood (ML) decoding error probabilities of finite-length LT and Raptor codes for both equal and unequal error protection schemes are derived. Further, our work is verified with simulations. Simulation results indicate that the proposed codes provide desirable UEP. We also note that the UEP property does not impose a considerable drawback on the overall performance of the codes. Moreover, we discuss that the proposed codes can provide unequal recovery time (URT). This means that given a target bit error rate, different parts of information bits can be decoded after receiving different amounts of encoded bits. This implies that the information bits can be recovered in a progressive manner. This URT property may be used for sequential data recovery in video/audio streaming  相似文献   

2.
The next step beyond third generation mobile networks is the Third Generation Partnership Project standard, named Long Term Evolution. A key feature of Long Term Evolution is the enhancement of multimedia broadcast and multicast services (MBMS), where the same content is transmitted to multiple users located in a specific service area. To support efficient download and streaming delivery, the Third Generation Partnership Project included an application layer forward error correction (AL‐FEC) technique based on the systematic fountain Raptor code, in the MBMS standard. To achieve protection against packet losses, Raptor codes introduce redundant packets to the transmission, that is, the forward error correction overhead. In this work, we investigate the application of AL‐FEC over MBMS streaming services. We consider the benefits of AL‐FEC for a continuous multimedia stream transmission to multiple users and we examine how the amount of forward error correction redundancy can be adjusted under different packet loss conditions. For this purpose, we present a variety of realistic simulation scenarios for the application of AL‐FEC and furthermore we provide an in‐depth analysis of Raptor codes performance introducing valuable suggestions to achieve efficient use of Raptor codes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The common practice for achieving unequal error protection (UEP) in scalable multimedia communication systems is to design rate-compatible punctured channel codes before computing the UEP rate assignments. This paper proposes a new approach to designing powerful irregular repeat accumulate (IRA) codes that are optimized for the multimedia source and to exploiting the inherent irregularity in IRA codes for UEP. Using the end-to-end distortion due to the first error bit in channel decoding as the cost function, which is readily given by the operational distortion-rate function of embedded source codes, we incorporate this cost function into the channel code design process via density evolution and obtain IRA codes that minimize the average cost function instead of the usual probability of error. Because the resulting IRA codes have inherent UEP capabilities due to irregularity, the new IRA code design effectively integrates channel code optimization and UEP rate assignments, resulting in source-optimized channel coding or joint source-channel coding. We simulate our source-optimized IRA codes for transporting SPIHT-coded images over a binary symmetric channel with crossover probability p. When p = 0.03 and the channel code length is long (e.g., with one codeword for the whole 512 x 512 image), we are able to operate at only 9.38% away from the channel capacity with code length 132380 bits, achieving the best published results in terms of average peak signal-to-noise ratio (PSNR). Compared to conventional IRA code design (that minimizes the probability of error) with the same code rate, the performance gain in average PSNR from using our proposed source-optimized IRA code design is 0.8759 dB when p = 0.1 and the code length is 12800 bits. As predicted by Shannon's separation principle, we observe that this performance gain diminishes as the code length increases.  相似文献   

4.
In this paper, convolutional codes are studied for unequal error protection (UEP) from an algebraic theoretical viewpoint. We first show that for every convolutional code there exists at least one optimal generator matrix with respect to UEP. The UEP optimality of convolutional encoders is then combined with several algebraic properties, e.g., systematic, basic, canonical, and minimal, to establish the fundamentals of convolutional codes for UEP. In addition, a generic lower bound on the length of a UEP convolutional code is proposed. Good UEP codes with their lengths equal to the derived lower bound are obtained by computer search.  相似文献   

5.
In this paper, we propose a scheme to construct low-density parity-check (LDPC) codes that are suitable for unequal error protection (UEP). We derive density evolution (DE) formulas for the proposed unequal error protecting LDPC ensembles over the binary erasure channel (BEC). Using the DE formulas, we optimize the codes. For the finite-length cases, we compare our codes with some other LDPC codes, the time-sharing method, and a previous work on UEP using LDPC codes. Simulation results indicate the superiority of the proposed design methodology for UEP  相似文献   

6.
在数字通信系统中,发送的数据序列中的比特往往具有不等的重要性。为了寻求更可靠的信息传输,人们提出了一些不等错误保护(UEP)编码方案。本文介绍了一种通过删截卷积码(CC)实现UEP编码的方案,并通过仿真分析了该UEP编码的性能。仿真结果表明,运用删截卷积码实现的UEP编码能获得较好的性能。  相似文献   

7.
The modified Plotkin bound for unequal error protection (UEP) codes is derived. Based on the separation vector of UEP codes, the authors adopt the average separation of all information digits of a given UEP code, and replacing it with minimum distance in the normal Plotkin bound leads to the new bound, which is valid for both linear and nonlinear UEP codes  相似文献   

8.
We introduce a new family of unequal error protection (UEP) codes, based on low-density parity-check (LDPC) component codes and Plotkin-type constructions. The codes are decoded iteratively in multiple stages, and the order of decoding determines the level of error protection. The level of UEP among the code bits is also influenced by the choice of the LDPC component codes and by some new reliability features incorporated into the decoding process. The proposed scheme offers a very good tradeoff between code performance on one side and encoding/decoding and storage complexity on the other side. The novel approach to UEP also allows for finding simple approximations for the achievable degrees of UEP, which can be used to govern practical code design implementations.  相似文献   

9.
It is possible for a linear block code to provide more protection for selected positions in the input message words than is guaranteed by the minimum distance of the code. Linear codes having this property are called linear unequal error protection (LUEP) codes. Bounds on the length of a LUEP code that ensures a given unequal error protection are derived. A majority decoding method for certain classes of cyclic binary UEP codes is treated. A list of short (i.e., of length less than 16) binary LUEP codes of optimal (i.e., minimal) length and a list of all cyclic binary UEP codes of length less than 40 are included.  相似文献   

10.
In many communications systems, data can be divided into different importance levels. For these systems, unequal error protection (UEP) techniques are used to guarantee lower BER for the more important classes. In particular, if the precise characteristics of the channel are not known, UEP can be used to recover the more important classes even in poor receiving conditions. In this paper, we derive bounds on the performance of unequal error protecting turbo codes. These bounds serve as an important tool in predicting the performance of these codes. In order to derive the bounds, we introduce the notion of UEPuniform interleaver which is a random interleaver that does not change the order of classes in the turbo code frame. We also present a method to derive the weight enumerating function for UEP turbo codes.  相似文献   

11.
Channel coding and transmission aspects for wireless multimedia   总被引:5,自引:0,他引:5  
Multimedia transmission has to handle a variety of compressed and uncompressed source signals such as data, text, image, audio, and video. On wireless channels the error rates are high and joint source/channel coding and decoding methods are advantageous. Also, the system architecture has to adapt to the bad channel conditions. Several examples of a joint design are given. We especially advocate the use of rate-compatible punctured systematic recursive convolutional (RCPRSC) codes which are show to lead to a straightforward and versatile unequal error protection (UEP) design. In addition, the high-end receiver could use soft outputs and source-controlled channel decoding for even better performance  相似文献   

12.
In this letter, we propose a new scheme to construct low-density parity-check (LDPC) codes that are suitable for unequal error protection (UEP). We derive UEP density evolution (UDE) formulas for the proposed ensemble over the binary erasure channel (BEC). Using the UDE formulas, high performance UEP codes can be found. Simulation results depict an improvement in the bit error rate of more important bits in comparison with previous results on UEP-LDPC codes.  相似文献   

13.
New results on self-orthogonal unequal error protection codes   总被引:1,自引:0,他引:1  
A lower bound on the length of binary self-orthogonal unequal error protection (UEP) codes is derived, and two design procedures for constructing optimal self-orthogonal UEP codes are proposed. With this lower bound, known self-orthogonal UEP codes can be evaluated. It is pointed out that, for given values of minimum distance and code rate, the self-orthogonal codes must be relatively long, so optimal self-orthogonal codes are not optimal in general. But self-orthogonal codes can be implemented simply, and they have error-correcting capabilities beyond those guaranteed by their minimum distance. These properties can be viewed as a partial compensation for using self-orthogonal codes  相似文献   

14.
In this paper, puncturing and path pruning are combined for convolutional codes to construct a new coding scheme for unequal error protection (UEP), called the hybrid punctured and path-pruned convolutional codes. From an algebraic viewpoint, we show that the hybrid codes not only inherit all the advantages of the conventional rate-compatible punctured convolutional codes and path-compatible pruned convolutional codes but also can provide more flexible choices of protection capability for UEP. In addition, a data-multiplexing scheme originally proposed for path-pruned codes which can guarantee smooth transition between rates without additional zero-padding for frame termination is proven applicable to the hybrid codes to improve the system throughput.  相似文献   

15.
非规则LDPC码的不等错误保护性能研究   总被引:4,自引:1,他引:3  
马丕明  袁东风  杨秀梅 《通信学报》2005,26(11):132-140
提出了一种具有不等错误保护性能的非规则低密度校验(LDPC,low-density parity-check)码信道编码方案, 构造了重量递增校验(weight-increasing parity-check)矩阵,系统编码时,重要信息比特映射到LDPC码的“精华”比特上。AWGN和Rayliegh衰落信道的仿真结果表明,与随机构造的非规则LDPC码相比,WICP-LDPC码具有好的UEP性能。  相似文献   

16.
Expanding window fountain codes for unequal error protection   总被引:1,自引:0,他引:1  
A novel approach to provide unequal error protection (UEP) using rateless codes over erasure channels, named Expanding Window Fountain (EWF) codes, is developed and discussed. EWF codes use a windowing technique rather than a weighted (non-uniform) selection of input symbols to achieve UEP property. The windowing approach introduces additional parameters in the UEP rateless code design, making it more general and flexible than the weighted approach. Furthermore, the windowing approach provides better performance of UEP scheme, which is confirmed both theoretically and experimentally.  相似文献   

17.
Embracing RaptorQ FEC in 3GPP multicast services   总被引:1,自引:0,他引:1  
Multimedia Broadcast/Multicast Services (MBMS) have been introduced by Third Generation Partnership Project (3GPP) aiming to efficiently deliver data to mobile users in a one-to-many way. In order to provide reliable multicast transmission, 3GPP recommends exclusively for MBMS the use of a Forward Error Correction (FEC) mechanism on the application layer. Raptor codes are standardized as the Application Layer FEC (AL-FEC) scheme over 3GPP MBMS. However, the 3GPP standardized systematic fountain Raptor code is nowadays considered obsolete, since a new variation of the Raptor codes has emerged. This enhanced AL-FEC scheme, named RaptorQ, promises higher protection efficiency and superior flexibility on the provision of demanding mobile multicast services. In this work, we provide an extensive performance evaluation presenting at first a theoretical performance comparison of the newly introduced RaptorQ FEC scheme with its predecessor Raptor code, examining the enhancements that RaptorQ introduces on the AL-FEC protection robustness. Thereafter, to verify the enhanced performance of RaptorQ, we present several simulation results considering the modeling of the AL-FEC protection over multicast services for next generation mobile networks, utilizing the ns-3 simulation environment. Investigating several mobile system parameters in conjunction with FEC encoding parameters, we provide valuable results regarding the impacts of the examined AL-FEC schemes application on the multicast services performance.  相似文献   

18.
Unequal error protection (UEP) codes find applications in broadcast channels, as well as in other digital communication systems, where messages have different degrees of importance. Binary linear UEP (LUEP) codes combined with a Gray mapped QPSK signal set are used to obtain new efficient QPSK block-modulation codes for unequal error protection. Several examples of QPSK modulation codes that have the same minimum squared Euclidean distance as the best QPSK modulation codes, of the same rate and length, are given. In the new constructions of QPSK block-modulation codes, even-length binary LUEP codes are used. Good even-length binary LUEP codes are obtained when shorter binary linear codes are combined using either the well-known |u¯|u¯+v¯|-construction or the so-called construction X. Both constructions have the advantage of resulting in optimal or near-optimal binary LUEP codes of short to moderate lengths, using very simple linear codes, and may be used as constituent codes in the new constructions. LUEP codes lend themselves quite naturally to multistage decoding up to their minimum distance, using the decoding of component subcodes. A new suboptimal two-stage soft-decision decoding of LUEP codes is presented and its application to QPSK block-modulation codes for UEP illustrated  相似文献   

19.
本文以移动信道的四状态Markov模型为基础,将Punctured卷积码(Punctured Convolutional Codes;PCC)用于快衰落移动信道下的图像传输系统中, 提出了通过对码率、母码约束长度和交织度这三种不同自由度的调整,实现图像传输的不等错误保护(Unequal Error Protection;UEP)方案.计算机模拟结果表明,所提出的方案具有明显的不等错误保护能力,可以满足在具有不等错误保护要求的移动环境下对传输图像质量的要求.  相似文献   

20.
Raptor codes   总被引:18,自引:0,他引:18  
LT-codes are a new class of codes introduced by Luby for the purpose of scalable and fault-tolerant distribution of data over computer networks. In this paper, we introduce Raptor codes, an extension of LT-codes with linear time encoding and decoding. We will exhibit a class of universal Raptor codes: for a given integer k and any real epsiv>0, Raptor codes in this class produce a potentially infinite stream of symbols such that any subset of symbols of size k(1+epsiv) is sufficient to recover the original k symbols with high probability. Each output symbol is generated using O(log(1/epsiv)) operations, and the original symbols are recovered from the collected ones with O(klog(1/epsiv)) operations. We will also introduce novel techniques for the analysis of the error probability of the decoder for finite length Raptor codes. Moreover, we will introduce and analyze systematic versions of Raptor codes, i.e., versions in which the first output elements of the coding system coincide with the original k elements  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号