首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrodynamics of jet impingement quenching of a stainless steel specimen has been studied experimentally. The specimen is heated to an initial temperature of about 900 °C and then quenched by a subcooled free-surface water jet. High-speed imaging shows that the free-surface of the water film in the wetted region is smooth. The water film outside the wetted region is deflected away from the surface and then breaks into droplets due to surface tension and shear forces. The splashed droplet velocity is found to be low up to a wetting front radius of 6 mm (r/dJ  2), beyond which it increases rapidly before reaching a constant value at a wetting front radius of about 8 to 10 mm (2.67 ? r/dJ ? 3.34). The water film velocity at the wetting front is calculated using the single-phase boundary layer model suggested by Watson [2]. At moderate subcooling, the splashed droplet velocity up to a wetting front radius of 10 mm (r/dJ  3.34) is found to be much lower than the estimated single-phase film velocity. The study shows that although the wetted region may appear devoid of any bubbles, strong two-phase flow occurs within this region.  相似文献   

2.
A quasi-discrete model for heating and evaporation of complex multicomponent hydrocarbon fuel droplets is suggested and tested in Diesel engine-like conditions. The model is based on the assumption that properties of components are weak functions of the number of carbon atoms in the components (n). The components with relatively close n are replaced by the quasi-components with properties calculated as average properties of the a priori defined groups of actual components. Thus the analysis of heating and evaporation of droplets consisting of many components is replaced by the analysis of heating and evaporation of droplets consisting of relatively few quasi-components. In contrast to previously suggested approaches to modelling the heating and evaporation of droplets consisting of many components, the effects of temperature gradient and quasi-component diffusion inside droplets are taken into account. The model is applied to Diesel fuel droplets, approximated as a mixture of 21 components CnH2n+2 for 5 ? n ? 25, which correspond to a maximum of 20 quasi-components with average properties for n = nj and n = nj+1, where j varies from 5 to 24. It is pointed out that droplet surface temperatures and radii, predicted by a rigorous model taking into account the effect of all 20 quasi-components, are very close to those predicted by the model, using just five quasi-components. Errors due to the assumptions that the droplet thermal conductivity and species diffusivities are infinitely large cannot be ignored in the general case.  相似文献   

3.
Droplet evaporation widely exists in the daily life and industrial production. In most of previous experimental studies, the evaporation of sessile droplets was conducted under a constant substrate temperature condition. However, drops often evaporating on a heating surface under a constant heat flux condition in many practical applications. In this paper, we have carried out an experiment on sessile 3 μl DI water droplets evaporated on hydrophilic and hydrophobic heating surfaces under constant heat flux in the range from 1153 W/m2 to 6919 W/m2. A high-speed camera was used to record the changing shapes of two sessile droplets on a hydrophilic and a hydrophobic heating surface placed side by side. The droplet height, dynamic contact angle, droplet contact diameter, evaporation mode and evaporation rate are presented.  相似文献   

4.
《Combustion and Flame》2014,161(2):551-564
The effects of ambient pressure, initial gas temperature and combustion reaction on the evaporation of a single fuel droplet and multiple fuel droplets are investigated by means of three-dimensional numerical simulation. The ambient pressure, initial gas temperature and droplets’ mass loading ratio, ML, are varied in the ranges of 0.1–2.0 MPa, 1000–2000 K and 0.027–0.36, respectively, under the condition with or without combustion reaction. The results show that both for the conditions with and without combustion reaction, droplet lifetime increases with increasing the ambient pressure at low initial gas temperature of 1000 K, but decreases at high initial gas temperatures of 1500 K and 2000 K, although the droplet lifetime becomes shorter due to combustion reaction. The increase of ML and the inhomogeneity of droplet distribution due to turbulence generally make the droplet lifetime longer, since the high droplets’ mass loading ratio at local locations causes the decrease of gas temperature and the increase of the evaporated fuel mass fraction towards the vapor surface mass fraction.  相似文献   

5.
Evaporation of mono-disperse fuel droplets under high temperature and high pressure conditions is investigated. The time-dependent growth of the boundary layer of the droplets and the influence of neighboring droplets are examined analytically. A transient Nusselt number is calculated from numerical data and compared to the quasi-steady correlations available in literature. The analogy between heat and mass transfer is tested considering transient and quasi-steady calculations for the gas phase up to the critical point for a single droplet. The droplet evaporation in a droplet chain is examined numerically. Experimental investigations are performed to examine the influence of neighboring droplets on the drag coefficients. The results are compared with drag coefficient models for single droplets in a temperature range from T = 293–550 K and gas pressure p = 0.1–2 MPa. The experimental data provide basis for model validation in computational fluid dynamics.  相似文献   

6.
A comprehensive experimental and numerical investigation on water microdroplet impingement and evaporation is presented from the standpoint of phase-change cooling technologies. The study investigates microdroplet impact and evaporation on a laser heated surface, outlining the experimental and numerical conditions necessary to quantify the interfacial thermal conductance (G) of liquid-metal interfaces during two-phase flow. To do this, continuum-level numerical simulations are conducted in parallel with experimental measurements facilitating high-speed photography and in-situ time-domain thermoreflectance (TDTR). During microdroplet evaporation on laser heated Al thin-films at room temperature, an effective interfacial thermal conductance of Geff = 6.4 ± 0.4 MW/m2 is measured with TDTR. This effective interfacial thermal conductance (Geff) is interpreted as the high-frequency (ac) interfacial heat transfer coefficient measured at the microdroplet/Al interface. Also on a laser heated surface, fractal-like condensation patterns form on the Al surface surrounding the evaporating microdroplet. This is due to the temperature gradient in the Al surface layer and cyclic vapor/air convection patterns outside the contact line. Laser heating, however, does not significantly increase the evaporation rate beyond that expected for microdroplet evaporation on isothermal Al thin-film surfaces.  相似文献   

7.
The objective of this work is to investigate the coupling of fluid dynamics, heat transfer and mass transfer during the impact and evaporation of droplets on a heated solid substrate. A laser-based thermoreflectance method is used to measure the temperature at the solid–liquid interface, with a time and space resolution of 100 μs and 20 μm, respectively. Isopropanol droplets with micro- and nanoliter volumes are considered. A finite-element model is used to simulate the transient fluid dynamics and heat transfer during the droplet deposition process, considering the dynamics of wetting as well as Laplace and Marangoni stresses on the liquid–gas boundary. For cases involving evaporation, the diffusion of vapor in the atmosphere is solved numerically, providing an exact boundary condition for the evaporative flux at the droplet–air interface. High-speed visualizations are performed to provide matching parameters for the wetting model used in the simulations. Numerical and experimental results are compared for the transient heat transfer and the fluid dynamics involved during the droplet deposition. Our results describe and explain temperature oscillations at the drop–substrate interface during the early stages of impact. For the first time, a full simulation of the impact and subsequent evaporation of a drop on a heated surface is performed, and excellent agreement is found with the experimental results. Our results also shed light on the influence of wetting on the heat transfer during evaporation.  相似文献   

8.
The characteristics of water droplet evaporation on three different hydrophobic surfaces, PCu (Plain Copper, θ = 115°), MSCu (Micro-Structured Copper, θ = 126°) and NSCuO (Nano-Structured Copper Oxide, θ = 159°) with coating of the same SAM (Self-Assembled Monolayer) material, were experimentally investigated. For industrial heat transfer applications, copper material was used as the substrate, and the simple and cost-effective fabrication technique to prepare the superhydrophobic surface, NSCuO, was introduced. Based on the observations, the behavior of droplet evaporation was divided into three stages: Stage I (constant contact area stage), Stage II (constant contact angle stage) and Stage III (mixed stage). When studying the PCu surface, the Stages I, II, and III were observed, consistent with previous reports. For the MSCu surface, Stages I and III appeared without Stage II, and the pinning period of contact line was the longest among the test samples due to the formation of Wenzel state droplet. In the case of the superhydrophobic NSCuO surface, only Stage III occurred, and the contact line moved freely during the entire evaporation time because of the formation of Cassie state droplet. The total evaporation time of the NSCuO was the longest out of all the samples tested. At the last stage of evaporation, the edge of the droplet shrank at a much faster rate in all surfaces. On the other hand, the shrinking velocity of the droplet height drastically increased only on the NSCuO, which was considered as the unique behavior of superhydrophobic surface. In this experiment, it was found that the surface structure determines the motion of the contact line on the surface, which, in turn, strongly influences the characteristics of the droplet evaporation.  相似文献   

9.
The evaporation characteristics of kerosene droplets containing dilute concentrations (0.1%, 0.5%, and 1.0% by weight) of ligand-protected aluminum (Al) nanoparticles (NPs) suspended on silicon carbide fiber were studied experimentally at different ambient temperatures (400–800 °C) under normal gravity. The evaporation behavior of pure and stabilized kerosene droplets was also examined for comparison. The results show that at relatively low temperatures (400–600 °C), the evaporation behavior of suspended kerosene droplets containing dilute concentrations of Al NPs was similar to that of pure kerosene droplets and exhibited two-stage evaporation following the classical d2-law. However, at relatively high temperatures (700–800 °C), bubble formation and micro-explosions were observed, which were not detected in pure or stabilized kerosene droplets. For all Al NP suspensions, regardless of the concentration, the evaporation rate remained higher than that of pure and stabilized kerosene droplets in the range 400–800 °C. At relatively low temperatures, the evaporation rate increased slightly. However, at relatively high temperatures (700–800 °C), the melting of Al NPs led to substantial enhancement of evaporation. The maximum increase in the evaporation rate (56.7%) was observed for the 0.5% Al NP suspension at 800 °C.  相似文献   

10.
Based on the intrinsic growth rate (R  T1/3) of single droplet, processes of nucleation, growth, renucleation and sweeping of droplet are simulated in this paper. The influences of number of initial droplets on average radius, surface coverage and number of droplets on substrate are investigated. The simulation results show that the apparent growth rate of droplets is strongly dependent on the number of initial droplets. In addition, statistical fractal characteristic of droplet size distribution is found to be consistent with experimental measurements, and the drop size distribution is also found to be consistent qualitatively with that from experimental observations. The validity of the present simulations is thus verified. The present work may provide a great help in well understanding of the growth mechanism of dropwise condensation.  相似文献   

11.
The heat transfer from thin wires to emulsions with a disperse phase formed from a liquid whose boiling temperature is much lower than the boiling temperature of the disperse medium was investigated. Experiments were conducted at atmospheric pressure on vertical and horizontal wires from 50 to 100 μm in diameter with n-pentane/glycerine, diethyl ether/water, and freon-113/water and water/oil emulsions.It was possible to describe the experimental data obtained by one analytical dependence Nu = AArPrM?1[1 ? exp(?JVt)]. The dependence presented was obtained from the proposed model of the chain branched activation of boiling centers in droplets of a superheated liquid. In this case the coefficient J acquires the meaning of the activation rate of these centers.  相似文献   

12.
《Applied Thermal Engineering》2005,25(5-6):941-952
A vapor diffusion model, which takes into account the reduction of droplet temperature during the evaporation process, was used to determine the achievable targets for desalination of seawater at temperatures between 26 °C and 32 °C when the saline water was injected as fine droplets in a low-pressure vaporizer. The temperatures between 26 °C and 32 °C correspond to the warm temperatures of the ocean surface in the tropics. The predictions from the model were verified by a large number of experiments at vacuum pressures between 10 mm and 18 mm mercury. The upper bound of the rate of flow of the saline water in the experiments was 1000 l/h. Typical evaporation time of the droplets was a few hundred milliseconds and this was less than the residence time of the spray provided for in the vaporizer. The yield of fresh water measured in the experiments was between 3% and 4% and matched well with the predictions. Small values of water injection pressures of about 0.1 MPa were found to be adequate when a swirl nozzle, used for garden sprays, was employed. Changes in the height of water injection in the vaporizer did not significantly influence the yield of fresh water.  相似文献   

13.
The present numerical study deals with mixed convection flows within square enclosures filled with porous media. The influence of various thermal boundary conditions on bottom and side walls based on thermal aspect ratio (A) is investigated for a wide range of parameters (1 ? Re ? 100, 0.015 ? Pr ? 7.2, 10?5 ? Da ? 10?3 and 103 ? Gr ? 105). A penalty finite element method with bi-quadratic elements has been used to investigate the results in terms of streamlines, isotherms and heatlines and average Nusselt numbers. Lid driven effect is dominant at low Darcy number (Da = 10?5), whereas buoyancy driven effect is dominant at high Darcy numbers (Da = 10?4 and Da = 10?3) for Re = 1. Asymmetric pattern is observed in isotherms and heatlines for Re = 100. It is found that thermal gradient is high at the center of the bottom wall for A = 0.1 due to large dense heatlines at that zone and that is low for A = 0.9 irrespective of Re, Pr and Gr. Overall heat transfer rates are higher for A = 0.1 compared to other thermal aspect ratios (A = 0.5, A = 0.9) irrespective of Darcy number, Prandtl number and Reynolds number.  相似文献   

14.
Results of experimental studies and the modelling of heating and evaporation of monodisperse ethanol and acetone droplets in two regimes are presented. Firstly, pure heating and evaporation of droplets in a flow of air of prescribed temperature are considered. Secondly, droplet heating and evaporation in a flame produced by previously injected combusting droplets are studied. The phase Doppler anemometry technique is used for droplet velocity and size measurements. Two-colour laser induced fluorescence thermometry is used to estimate droplet temperatures. The experiments have been performed for various distances between droplets and various initial droplet radii and velocities. The experimental data have been compared with the results of modelling, based on given gas temperatures, measured by coherent anti-stokes Raman spectroscopy, and Nusselt and Sherwood numbers calculated using measured values of droplet relative velocities. When estimating the latter numbers the finite distance between droplets was taken into account. The model is based on the assumption that droplets are spherically symmetrical, but takes into account the radial distribution of temperature inside droplets. It is pointed out that for relatively small droplets (initial radii about 65 μm) the experimentally measured droplet temperatures are close to the predicted average droplet temperatures, while for larger droplets (initial radii about 120 μm) the experimentally measured droplet temperatures are close to the temperatures predicted at the centre of the droplets.  相似文献   

15.
《Journal of power sources》2006,162(2):1304-1311
To enhance the performance (i.e., mechanical properties and ionic conductivity) of pore-filling polymer electrolytes, titanium dioxide (TiO2) nanoparticles are added to both a porous membrane and its included viscous electrolyte, poly(ethylene oxide-co-ethylene carbonate) copolymer (P(EO-EC)). A porous membrane with 10 wt.% TiO2 shows better performance (e.g., homogeneous distribution, high uptake, and good mechanical properties) than the others studied and is therefore chosen as the matrix to prepare polymer electrolytes. A maximum conductivity of 5.1 × 10−5 S cm−1 at 25 °C is obtained for a polymer electrolyte containing 1.5 wt.% TiO2 in a viscous electrolyte, compared with 3.2 × 10−5 S cm−1 for a polymer electrolyte without TiO2. The glass transition temperature, Tg is lowered by the addition of TiO2 (up to 1.5 wt.% in a viscous electrolyte) due to interaction between P(EO-EC) and TiO2, which weakens the interaction between oxide groups of the P(EO-EC) and lithium cations. The overall results indicate that the sample prepared with 10 wt.% TiO2 for a porous membrane and 1.5 wt.% TiO2 for a viscous electrolyte is a promising polymer electrolyte for rechargeable lithium batteries.  相似文献   

16.
An experimental investigation was conducted to visually observe the dynamic characteristics of water droplets with evaporation and nucleation on stainless steel and polished silicon surfaces. The water droplet diameter, contact area, and spreading speed were measured using a high‐speed CCD camera at surface temperatures ranging from 110°C to 190°C, and a model was proposed to describe the dynamic behavior of droplet spreading. The spreading of water droplets under evaporation and nucleate boiling is highly dependent on the dynamic bubble behavior in the droplets, particularly bubble volume, bubble interaction, as well as the surface properties and temperature. Water droplets were easiest to spread at the surface temperature of 130 °C, and the spreading tendency increased with increasing surface coarseness. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20231  相似文献   

17.
Functionalized disiloxane compounds were synthesized by attaching oligo(ethylene glycol) chains, –(CH2CH2O)–n, n = 2–7, via hydrosilation, dehydrocoupling, and nucleophilic substitution reactions and were examined as non-aqueous electrolyte solvents in lithium-ion cells. The compounds were fully characterized by 1H, 13C, and 29Si nuclear magnetic resonance (NMR) spectroscopy. Upon doping with lithium bis(oxalato)borate (LiBOB) or LiPF6, the disiloxane electrolytes showed conductivities up to 6.2 × 10?4 S cm?1 at room temperature. The thermal behavior of the electrolytes was studied by differential scanning calorimetry, which revealed very low glass transition temperatures before and after LiBOB doping and much higher thermal stability compared to organic carbonate electrolytes. Cyclic voltammetry measurements showed that disiloxane-based electrolytes with 0.8 M LiBOB salt concentration are stable to 4.7 V. The LiBOB/disiloxane combinations were found to be good electrolytes for lithium-ion cells; unlike LiPF6, LiBOB can provide a good passivation film on the graphite anode. The LiPF6/disiloxane electrolyte was enabled in lithium-ion cells by adding 1 wt% vinyl ethylene carbonate (VEC). Full cell performance tests with LiNi0.80Co0.15Al0.05O2 as the cathode and mesocarbon microbead (MCMB) graphite as the anode show stable cyclability. The results demonstrate that disiloxane-based electrolytes have considerable potential as electrolytes for use in lithium-ion batteries.  相似文献   

18.
Thermal transport and transient dispersion of pollutants emitted from two discrete strips within the displacement ventilation enclosure have been modeled numerically. Following the full numerical simulation of turbulent air flows, the inverse determinations of multiple pollutant sources were conducted by the use of quasi reversibility methodology. Direct simulation together with the turbulent streamlines and turbulent heatlines demonstrate that the enclosure flow pattern, enclosure air thermal level and heat transfer potential will depend on the interactions of external forced flow and thermal buoyancy driven flows, i.e., Reynolds number (2 × 103 ? Re ? 104) and Grashof number (106 ? Gr ? 1010). In subsequent forward time and backward time modeling of airborne pollutant transports, temporal evolutions of enclosure average concentration and pollutant exhaust are shown to depend on the supplying velocity (Re), thermal plume (Gr), pollutant diffusivity (0.1 ? Sc ? 2), and the pitch between both sources (0.2H ? dPSL = dPSR ? 0.7H). Reverse time modeling of airborne spread has demonstrated that increasing the spread rate and the concentration sensitivity of airborne pollutants will facilitate the identification of pollutant sources.  相似文献   

19.
Poly(N-propyl-vinylimidazolium iodide-co-poly(ethylene glycol) methyl ether methacrylate) with a comb-like configuration was synthesized. The copolymer and its blend with poly(ethylene oxide) (PEO) were used to prepare the polymer electrolytes for solid dye-sensitized solar cells. The amorphous characteristics and the ion-crosslinking effects of the copolymer and its blend electrolyte were analyzed by WAXS, DSC and FT-IR. The copolymer and PEO in the blend electrolyte were shown to play the roles of decreasing the crystallinity and breaking the ion-crosslinking, respectively. The blend electrolytes thus presented the highest ionic conductivity among the prepared electrolytes. The as-prepared DSSCs yielded the energy conversion efficiency of 3.46% at 100 mW cm?2. The impedance results indicated the improved photovoltaic performance of the blend electrolyte was originated from the increased ionic diffusion coefficient and the prevented downward movement of the conduction band edge of TiO2.  相似文献   

20.
Numerical study of the effect of confinement on a flow structure and heat transfer in an impinging mist jets with low mass fraction of droplets (ML1 ? 1%) were presented. The turbulent mist jet is issued from a pipe and strikes into the center of the flat heated plate. Mathematical model is based on the steady-state RANS equations for the two-phase flow in Euler/Euler approach. Predictions were performed for the distances between the nozzle and the target plate x/(2R) = 0.5–10 and the initial droplets size (d1 = 5–100 μm) at the varied Reynolds number based on the nozzle diameter, Re = (1.3–8) × 104. Addition of droplets causes significant increase of heat transfer intensity in the vicinity of the jet stagnation point compared with the one-phase air impinging jet. The presence of the confinement upper surface decreases the wall friction and heat transfer rate, but the change of friction and heat transfer coefficients in the stagnation point is insignificant. The effect of confinement on the heat transfer is observed only in very small nozzle-to-plate distances (H/(2R) < 0.5) both in single-phase and mist impinging jets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号