首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The phase structure in l -α-dipalmitoylphosphatidylcholine–2.0 mol% fluorescent 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate Langmuir monolayers dispersed on a 2  m sucrose solution subphase is studied with near-field scanning optical microscopy (NSOM). Cantilevered NSOM probes operating in a tapping-mode feedback or an optical interferometric feedback mode are capable of tracking the air–sucrose solution interface. At the micrometre scale, the NSOM fluorescence images reveal lipid domain features similar to those observed previously in supported Langmuir–Blodgett (LB) monolayers. At the submicrometre scale, the small nanometric lipid islands seen in LB films are not observed at the air–sucrose interface. This supports a mechanism in which domain formation in LB films can be induced by means of the transfer process onto the solid support. Progress towards extending these studies to films at the air–water interface using the optical interferometric feedback method is also discussed.  相似文献   

2.
We have imaged fluorescent erbium‐doped fluoride glass particles by apertureless scanning near‐field optical microscopy. The optical excitation has been performed at λ = 780 nm whereas fluorescence emission has been collected around λ = 550 nm. This process, called upconversion by energy transfer, involves two erbium ions and is not linear. Besides an improvement of the lateral resolution, we have observed on some particles that the fluorescence is not homogeneously distributed, but is rather localized in some zones brighter than others. By making tip approach curves, we have also observed that the amount of fluorescence intensity scattered by the tip is increasing when the tip is approaching the sample surface.  相似文献   

3.
We have developed a novel light source for use in a scanning near‐field optical microscope (SNOM or NSOM) based on a nanopipette whose distance from the sample surface is controlled using scanning ion conductance microscopy. The light source is based on the general principle of the chemical reaction between a fluorophore in the pipette and ligand in the bath, to produce a highly fluorescent complex that is continually renewed at the pipette tip. In these experiments we used fluo‐3 and calcium, respectively. This complex is then excited with an Ar+ laser, focused on the pipette tip, to produce the light source. This method overcomes the transmission problem of more traditional SNOM probes and has been used to acquire simultaneous high‐resolution topographic and optical images of biological samples in physiological buffer. A resolution of ~220 nm topographic and ~190 nm optical was determined through imaging fixed sea‐urchin sperm flagella. Live A6 cells were also imaged, demonstrating the potential of this system for SNOM imaging of living cells.  相似文献   

4.
We demonstrate fluorescence imaging of single molecules, by near-field scanning optical microscopy (NSOM), using the illumination-collection mode of operation, with an aperture probe. Fluorescence images of single dye molecules were obtained with a spatial resolution of 15 nm, which is smaller than the diameter of the aperture (20 nm) of the probe employed. Such super-resolution may be attributable to non-radiative energy transfer from the molecules to the coated metal of the probe since the resolution obtained in the case of conventional NSOM is limited to 30–50 nm due to penetration of light into the metal.  相似文献   

5.
A novel method for forming dye‐containing nano‐domains in thin films using a polymer alloy system has been developed. The polymer alloy system (PS‐b‐PMMA), which consists of polystyrene (PS) and polymethyl methacrylate (PMMA), forms microphase separation in thin films. The film was treated using a previously reported technique under vacuum conditions, and an organic dye was selectively dispersed into the PS. Selective association of the dye (diarylethene; cis‐1, 2‐dicyano‐1, 2‐bis (2,4,5‐trimethyl‐3‐thienyl) ethene) with the PS nano‐domains was then observed, with both transmission electron microscopy and scanning near‐field optical microscopy with an absorption spectrum.  相似文献   

6.
High-resolution near-field scanning optical microscopy (NSOM) fluorescence and topographic images of l -α-dipalmitoylphosphatidylcholine (DPPC) monolayers doped with a fluorescent dye are presented. DPPC monolayers are deposited onto mica substrates from the air–water interface at several surface pressures using the Langmuir–Blodgett technique. Sub-diffraction limit phase domain structures are observed in both fluorescence and topographic NSOM images of the lipid films. The morphology of the resulting monolayers depends strongly on the surface pressure and composition of the subphase used in the film transfer. Mechanisms for lipid domain formation and growth are discussed.  相似文献   

7.
Near field optical microscopy (NSOM) is one of the possible solutions to circumvent the diffraction limit, but the control of the optical probe in solution has been a technical challenge for practical applications. Most recently, it has been shown that the pipette used in the scanning ion conductance microscope can be modified to form a high resolution near field optical probe. When combined with a novel distance modulation mechanism, a robust near field microscope can be constructed for operation in aqueous solution. In this paper, we present technical details of this design and a further characterization of the NSOM system for imaging in solution. Fundamental limitations of this approach in comparison to other systems are also discussed. Based on the current technology, it is concluded that better than 50 nm resolution should be achievable with this technique for fluorescence, as well as fluorescence resonance energy transfer, imaging of biological specimens.  相似文献   

8.
Shiku H  Dunn RC 《Journal of microscopy》1999,194(PT 2-3):455-460
High-resolution near-field scanning optical microscopy (NSOM) fluorescence and topographic images of L-alpha-dipalmitoylphosphatidylcholine (DPPC) monolayers doped with a fluorescent dye are presented. DPPC monolayers are deposited onto mica substrates from the air-water interface at several surface pressures using the Langmuir-Blodgett technique. Sub-diffraction limit phase domain structures are observed in both fluorescence and topographic NSOM images of the lipid films. The morphology of the resulting monolayers depends strongly on the surface pressure and composition of the subphase used in the film transfer. Mechanisms for lipid domain formation and growth are discussed.  相似文献   

9.
Shiku H  Dunn RC 《Journal of microscopy》1999,194(PT 2-3):461-466
The phase structure in L-alpha-dipalmitoylphosphatidylcholine-20 mol% fluorescent 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate Langmuir monolayers dispersed on a 2 M sucrose solution subphase is studied with near-field scanning optical microscopy (NSOM). Cantilevered NSOM probes operating in a tapping-mode feedback or an optical interferometric feedback mode are capable of tracking the air-sucrose solution interface. At the micrometre scale, the NSOM fluorescence images reveal lipid domain features similar to those observed previously in supported Langmuir-Blodgett (LB) monolayers. At the submicrometre scale, the small nanometric lipid islands seen in LB films are not observed at the air-sucrose interface. This supports a mechanism in which domain formation in LB films can be induced by means of the transfer process onto the solid support. Progress towards extending these studies to films at the air-water interface using the optical interferometric feedback method is also discussed.  相似文献   

10.
We introduce a method of dye fluorescence excitation and measurement that utilizes a near-field scanning optical microscope (NSOM). This NSOM uses an apertureless metallic probe, and an optical system that contains a high numerical aperture (NA) objective lens (NA = 1.4). When the area which satisfies NA < 1 is masked, the objective lens allows for the rejection of possible transmitted light (NA < 1) through the sample. In such conditions, the focused spot consists of only the evanescent field. We found that this NSOM system strongly reduces the background of the dye fluorescence and allows for the measurement of the fluorescence intensity below the diffraction limit of the excitation source.  相似文献   

11.
We describe a near‐field ellipsometer for accurate characterization of ultrathin dielectric films. Optical tunnelling mimics the absorption in metallic films, enabling accurate measurement of the refractive index of ultrathin dielectric film. A regression model shows that a refractive index resolution of 0.001 for films as thin as 1 nm is possible. A solid‐immersion nano‐ellipsometer that incorporates this near‐field ellipsometric technique with a solid‐immersion lens is constructed to demonstrate the viability of this technique. Such a nano‐ellipsometer can accurately characterize thin films ranging in thickness from subnanometre to micrometres with potential transverse resolution of the order of 100 nm.  相似文献   

12.
The most difficult task in near-field scanning optical microscopy (NSOM) is to make a high quality subwavelength aperture probe. Recently, we have developed high definition NSOM probes by focused ion beam (FIB) milling. These probes have a higher brightness, better polarization characteristics, better aperture definition and a flatter end face than conventional NSOM probes. We have determined the quality of these probes in four independent ways: by FIB imaging and by shear-force microscopy (both providing geometrical information), by far-field optical measurements (yielding throughput and polarization characteristics), and ultimately by single molecule imaging in the near-field. In this paper, we report on a new method using shear-force microscopy to study the size of the aperture and the end face of the probe (with a roughness smaller than 1.5 nm). More importantly, we demonstrate the use of single molecules to measure the full three-dimensional optical near-field distribution of the probe with molecular spatial resolution. The single molecule images exhibit various intensity patterns, varying from circular and elliptical to double arc and ring structures, which depend on the orientation of the molecules with respect to the probe. The optical resolution in the measurements is not determined by the size of the aperture, but by the high optical field gradients at the rims of the aperture. With a 70 nm aperture probe, we obtain fluorescence field patterns with 45 nm FWHM. Clearly, this unprecedented near-field optical resolution constitutes an order of magnitude improvement over far-field methods like confocal microscopy.  相似文献   

13.
In this work, three‐dimensional near‐field imaging of the focused laser spot was studied theoretically and experimentally. In the theoretical simulation, we use the electromagnetic equivalent of the vectorial Kirchhoff diffraction integral to calculate the intensity distribution of the focal region, and a high depolarization is found in high numerical aperture systems (NA = 0.85). The experimental set‐up is based on a near‐field scanning optical microscope (NSOM) system. A high‐NA objective lens is used to focus incident light of various polarizations, and a tapered near‐field optical fibre probe of the NSOM system is used to determine the intensity of the focal field. The results show an asymmetric distribution of the focused intensity with the linear polarized laser beam.  相似文献   

14.
We describe a computational approach for the automatic recognition and classification of atomic species in scanning tunnelling microscopy images. The approach is based on a pipeline of image processing methods in which the classification step is performed by means of a Fuzzy Clustering algorithm. As a representative example, we use the computational tool to characterize the nanoscale phase separation in thin films of the Fe‐chalcogenide superconductor FeSexTe1‐x, starting from synthetic data sets and experimental topographies. We quantify the stoichiometry fluctuations on length scales from tens to a few nanometres.  相似文献   

15.
Total internal reflection fluorescence microscopy is used to detect cellular events near the plasma membrane. Behaviours of secretory vesicles near the cell surface of living PC12 cells, a neuroendocrine cell line, are studied. The secretory vesicles are labelled by over‐expression of enhanced green fluorescent protein‐tagged Rab3A, one of the small G proteins involved in the fusion of secretory vesicles to plasma membrane in PC12 cells. Images acquired by a fast cooled charge‐coupled device camera using conventional fluorescence microscopy and total internal reflection fluorescence microscopy are compared and analysed. Within the small evanescent range (< 200 nm), the movements of the secretory vesicles of PC12 cells before and after stimulation by high K+ are examined. The movements of one vesicle relative to another already docked on the membrane are detected. Total internal reflection fluorescence microscopy provides a novel optical method to trace and analyse the exocytotic events and vesicle specifically near a cell membrane without interference of signals from other parts of the cell.  相似文献   

16.
Time-resolved fluorescence SNOM is used to probe the mesoscopic structure and dynamics of long-chain merocyanine (C18MC) J-aggregates on glass plates prepared by spin coating, casting, and casting of water-soluble polymer films. A globular structure with an average diameter of ∼ 1 µm and a height of ∼ 50 nm was attributed to the J-aggregate of C18MC in the spin-coating film. In polymer films, the bandwidth of the absorption of J-aggregate is much narrower in polyvinyl alcohol (PVA, ∼ 20 nm) than that in polyvinyl sulphate (PVS, ∼ 60 nm). We have demonstrated that the large bandwidth of the spectrum is due to the inhomogeneous distribution of the J-aggregate. The fluorescence image of the J-aggregate in PVA film was rather uniform, whereas non-uniform distribution of the fluorescence was observed in PVS film. The fluorescence of C18MC J-aggregate in a small domain of PVA film was a single exponential decay with a lifetime as short as 19 ps, which was shorter than that in PVS film with a two-exponential decay (average lifetime of ∼ 25 ps). The fluorescence lifetime of the J-aggregate and its single exponential behaviour are considered to be indicators of the uniform distribution of the J-aggregate. The non-uniform distribution of the J-aggregate in PVS film was interpreted in terms of electrostatic interaction between PVS and merocyanine.  相似文献   

17.
Fluorescence in situ hybridization coupled with far‐field fluorescence microscopy is a commonly used technique to visualize chromosomal aberrations in diseased cells. To obtain the best possible results, chromatin integrity must be preserved to ensure optimal hybridization of fluorescence in situ hybridization probes. However, biological samples are known to degrade and storage conditions can be critical. This study concentrates its investigation on chromatin stability as a function of time following fluorescence in situ hybridization type denaturing protocols. This issue is extremely important because chromatin integrity affects the fluorescence response of the chromosome. To investigate this, metaphase chromosome spreads of human lymphocytes were stored at both ?20 and ?80 °C, and were then imaged using scanning near‐field optical microscopy over a nine month period. Using the scanning near‐field optical microscope's topography mode, chromosome morphology was analysed before and after the application of fluorescence in situ hybridization type protocols, and then as a function of storage time. The findings revealed that human chromosome samples can be stored at ?20 °C for short periods of time (~ several weeks), but storage over 3 months compromises chromatin stability. Topography measurements clearly show the collapse of the stored chromatin, with variations as large as 60 nm across a chromosome. However, storage at ?80 °C considerably preserved the integrity with variations in topography significantly reduced. We report studies of the fluorescent response of stored chromosomes using scanning near‐field optical microscopy and their importance for gaining further understanding of chromosomal aberrations.  相似文献   

18.
The inexpensive fabrication of high-quality probes for near-field optical applications is still unsolved although several methods for integrated fabrication have been proposed in the past. A further drawback is the intensity loss of the transmitted light in the 'cut-off' region near the aperture in tapered optical fibres typically used as near-field probes. As a remedy for these limitations we suggest here a new wafer-scale semibatch microfabrication process for transparent photoplastic probes. The process starts with the fabrication of a pyramidal mould in silicon by using the anisotropic etchant potassium hydroxide. This results in an inverted pyramid limited by < 111 > silicon crystal planes having an angle of ∼ 54°. The surface including the mould is covered by a ∼ 1.5 nm thick organic monolayer of dodecyltrichlorosilane (DTS) and a 100-nm thick evaporated aluminium film. Two layers of photoplastic material are then spin-coated (thereby conformal filling the mould) and structured by lithography to form a cup for the optical fibre microassembly. The photoplastic probes are finally lifted off mechanically from the mould with the aluminium coating. Focused ion beam milling has been used to subsequently form apertures with diameters in the order of 80 nm. The advantage of our method is that the light to the aperture area can be directly coupled into the probe by using existing fibre-based NSOM set-ups, without the need for far-field alignment, which is typically necessary for cantilevered probes. We have evidence that the aluminium layer is considerably smoother compared to the 'grainy' layers typically evaporated on free-standing probes. The optical throughput efficiency was measured to be about 10−4. This new NSOM probe was directly bonded to a tuning fork sensor for the shear force control and the topography of a polymer sample was successfully obtained.  相似文献   

19.
A combination of atomic force microscopy (AFM) and near field scanning optical microscopy has been used to study domain formation in dipalmitoylphosphatidylcholine (DPPC)/cholesterol monolayers with cholesterol concentrations ranging from 0 to 50%. The results show a clear evolution from a mixture of liquid expanded and liquid condensed phases for cholesterol concentrations < 10% to a mixture of liquid expanded and two cholesterol‐containing phases at intermediate concentrations, and finally to a single homogeneous liquid ordered phase for 33% cholesterol. Mixtures of the various phases are clearly identified by height differences in AFM and in some cases by fluorescence imaging for samples containing 0.5% BODIPY dye, which localizes preferentially in the more fluid phase. Note that fluorescence imaging, at least with the dye used here, is unable to distinguish between the cholesterol‐rich and cholesterol‐poor phases detected at intermediate cholesterol concentrations. The combination of fluorescence and AFM imaging provides a more complete picture of the phase evolution for cholesterol/DPPC monolayers than could be obtained by either technique alone, and presents substantial advantages over conventional fluorescence microscopy in that submicrometre‐sized domains can be readily detected.  相似文献   

20.
Bent near‐field optical probes for biological applications have been fabricated using a combination of a two‐step chemical etching method and focused ion beam milling to create a well‐defined aperture. The transmission efficiencies have been evaluated as a function of laser wavelength (λ) and aperture size (D) for both large and small core fibres. The probe transmission behaviour follows a (D/λ)3 relationship. The double‐etched probes are compared to pulled probes fabricated from highly GeO2‐doped dispersion compensating fibre and a standard single‐mode optical fibre. The transmission efficiencies of both types of pulled probes are approximately two orders of magnitude lower than double‐etched probes with similar aperture sizes. To demonstrate the utility of the various probes, their imaging performance has been evaluated for samples of polymer beads and phase‐separated phospholipid monolayers of dipalmitoylphosphatidylcholine or cholesterol/phosphatidylcholine/sphingomyelin mixtures. Both pulled and double‐etched probes are suitable for fluorescence imaging of polymer spheres. However, pulled probes are rapidly damaged at the higher input laser intensities required for fluorescence imaging of monolayer samples doped with < 1% of a fluorescent dye‐labelled lipid. The images obtained with the double‐etched probes show excellent spatial resolution and signal/noise, illustrating the potential of such probes for imaging of biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号