首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Mycelia pellet formed spontaneously in the process of cultivation was exploited as a biological carrier for whole-cell immobilization due to its unique structural characteristic. An innovative two-species whole-cell im- mobilization system was achieved by inoculating the marine-derived fungus Pestalotiopsis sp. J63 spores into cul- ture medium containing another fungus Penicillium janthinellum P1 pre-grown mycelia pellets for 2 days without any pretreatment. In order to evaluate the biological degradation capacity of this novel constructed immobilization system, the immobilized pellets were applied to treat paper mill effluent and decolorize dye Azure B. The use of the constructed immobilization system in the effluent resulted in successful and rapid biodegradation of numerous in- soluble fine fibers. The optimum conditions of immobilized procedure for maximum biodegradation capacity were determined using orthogonal design with biomass of P1 pellets 10 g (wet mass), concentration of J63 spore 2x109 mlq, and immobilization time 2 d. The results demonstrate that immobilized pellets have more than 99% biodegradation capacity in a ten-hour treatment process. The kinetics of biodegradation fits the Michaelis-Menten equation well. Besides, the decolorization capability of immobilized pellets is more superior than that of P1 mycelia pellets. Overall, the present study offers a simple and reproducible way to construct a two-species whole-cell immobiliza- tion system for sewage treatment.  相似文献   

2.
With the rapid increase of lubricant consumption,oil contamination becomes more serious.Biotreatment is an important method to remove oil contamination with some advantages.In this study,acclimatized oilcontaminated soil and used lubricating oil were sampled to isolate lubricant-degrading strains by several methods.51 isolates were obtained and 24-well plates were employed to assess bacterial potential in highthroughput screening.The method was noted for the prominence of oil–water two-phase system with saving chemicals,shortening cycles and lessening workloads.In order to decrease inaccuracy,subculture and resting cells were inoculated into mineral salt medium with 200 μl oil in well plates for the cultivation at 37 °C for 5and 7 days,and the biodegradation potential was characterized by the changes of oil film and cell density.With appropriate evaluation by shaking flask tests,5 isolates were retained for their potentials with the maximum biodegradation from 1500 to 2200 mg · L~(-1)and identified as Acidovorax citrulli,Pseudomonas balearica,Acinetobacter johnsonii(two isolates with different biodegradation potentials)and Acidovorax avenae using 16 S r RNA sequencing analysis.Also,lipase activity was determined using indicator titration and p-nitrophenyl palmitate(p-NPP)methods.The results indicated that only p-NPP was successful to test lipase activity with the range of 1.93–6.29 U · ml~(-1).Although these five strains could degrade 1000 mg · L~(-1)lubricating oil in158–168 h,there existed distinct difference in enzyme activity,which demonstrates that lipase activity could not be used as the criterion to evaluate microbial biodegradation potential for petroleum hydrocarbons.  相似文献   

3.
Vitamin A ester was synthesized in organic solvents with immobilized lipase from Candida sp. The types of lipases, influences of solvent, the molar ratio of substrates, the reaction temperature and the water activity in the reaction were studied in detail in order to obtain the optimum conditions for Vitamin A palmitate synthesis. In a system of hexane, 100mg immobilized Candida sp. lipase was used in the presence of 1.2mmol vitamin A acetate and 3.6mmol palmitic acid. The yield of vitamin A palmitate reached 81% in 12h at 25℃. The immobilized Candida sp. lipase was prepared by adsorbing Cand/da sp. fermentation broth on pretreated textile and could be reused for at least six batches.  相似文献   

4.
Repeated-batch and continuous production of L-lactic acid by immobilized Rhizopusoryzae with calcium alginate entrapment method in a three-phase fluidized-bed bioreactor was stud-ied.The operation conditions were optimized.The productivity based on total reactor volume wasabout 3 times higher than that with free cells in a traditional stirred tank bioreactor.A mathemat-ical model was proposed and the model predictions were in good agreement with the experimentaldat.  相似文献   

5.
A novel saline-tolerant bacterium Bacillus circulans WZ-12 was evaluated for its potential to degrade four chlorinated hydrocarbons under saline conditions.CH2Cl2 was effectively degraded by Bacillus circulans WZ-12 cells in the medium containing NaCl concentrations ranging from 5 g·L-1 to 10 g·L-1,and the maximum degradation efficiency(85%) was achieved at NaCl concentration of 10 g·L-1.Similarly,Bacillus circulans WZ-12 was able to degrade CH2 BrCl,C2H4Cl2,and C2H2Cl2 in the presence of 10 g NaCl per liter within 24 h.Cells of Bacillus circulans WZ-12 grown in minimal salt medium contained low levels of glycine betaine(GB),but GB levels were 3-to 5-fold higher in cells grown in media with high salt.Kinetic analysis revealed that biodegradation of the four chlorinated hydrocarbons was concentration dependent and a linear inverse correlation(R 2-0.85-0.94) was observed between the rate of biodegradation(V) and salt concentration from 5 g·L-1 to 60 g·L-1.The growing cells(in minimal salt medium) degraded approximately 50% of the CH2Cl2 within 24 h,whereas the resting cells(in physiological saline) degraded only 25% of the CH2Cl2 within 24 h and were inactive after 36 h cultivation.Biodegradation could be repeatedly performed for more than 192 h with more than 50% removal efficiency.Bacillus circulans WZ-12 grows well in an aqueous/oil system,hence,it is effective for the treatment of industrial effluents that contain chlorinated hydrocarbons with high salt concentrations.  相似文献   

6.
The ability of catalyzing indole into indigo of gene engineering strain expressing P450 BM3 immobilized by entrapment in calcium-alginate gel capsules was examined,and various characteristics of immobilized cells were assessed.Optimum conditions for cells activity were not affected after immobilization,and pH and tempera- ture for both free and immobilized cells were found to be pH 7.5 and 35℃,respectively.The immobilized cells exhibited a markedly improved thermal stability than free cells.After five repeated experiments,the yield of indigo with the immobilized cells retained over 94%of their original activity,which indicated that the operational stability for recycling in batch processes was improved.  相似文献   

7.
The oxidative dehydrogenation of butane to butadiene and butene was studied using a conventional fixed-bed ractor (FBR), inert membrane reactor (IMR) and mixed inert membrane reactor (MIMR). When IMR and MIMR were employed, a ceramic membrane modified by partially coating with glaze was used to distribute oxygen to a fixed-bed of 24-V-Mg-O catalyst. The oxygen partial pressure in the catalyst bed could be decreased. The effect of feeding modes and operation conditions were investigated. The selectivity of C4 dehydrogenation products (bntene and bntadiene) was found to be higher in IMR than in FBR. The feeding mode with 20% of air mixing with butane in MIMR was found to be more efficient than the feeding mode with all air permeating through ceramic membrane. The MIMR gave the most smooth temperature profile along the bed.  相似文献   

8.
Lipase was immobilized in ion exchange resin and then used in the hydrolysis of olive oil to produce fatty acids and glycerol. The time course of hydrolysis of olive oil was investigated in a stirred tank reactor using both of the free and immobilized lipases to find the yield of activity of immobilized enzyme. Continuous hydrolysis of olive oil was also carried out in a tapered column reactor and a cylindrical column reactor with a bottom ID of 10 mm at different upward flow rates. It can be known from experimental results that the degree of hydrolysis of olive oil in the tapered column reactor is moderately better than that in the cylindrical column reactor, the pressure drop in the tapered column reactor is much smaller than that in the cylindrical column reactor.  相似文献   

9.
Enzyme immobilization has been accepted as an efficient technique for improving the stability and recyclability of enzymes. Herein, biomimetic mineralization strategy was employed to achieve the immobilization of urease in a type of metal–organic frameworks(zeolite imidazolate framework-8, ZIF-8), and the immobilized enzyme urease@ZIF-8 was systematically evaluated for its structure, activity, stability and recyclability, using the hydrolysis of urea as a model. The entrapment of urease was found to be realized in a synchronous manner with the formation of ZIF-8 crystal. The loading of urease in ZIF-8 was measured to be ca. 10.6% through the bicinchoninic acid(BCA) protein assay. The encapsulated urease could efficiently maintain its native conformation, which endowed the immobilized urease with excellent activity and stability, even in harsh conditions(e.g., in the presence of trypsin, acidic or alkali conditions, or at high temperature). Further, urease@ZIF-8 exhibited good recyclability during the degradation of urea, in which it could keep 58.86% of initial activity after being used for 5 cycles. Thus, biomimetic mineralization could be potentially utilized as a promising method to prepare immobilized ureases with superior activity, stability and recyclability, thereby facilitating the construction of efficient catalysts for industrial biocatalysis and biosensing.  相似文献   

10.
CO2 gasification of Fuijian high-metamorphous anthracite with black liquor (BL) and/or mixture of BL and calcium stuff (BL+Ca) as catalyst was studied by using a thermogravimetry under 750-950℃ at ambient pressure. When the coal was impregnated with an appropriate quantity of Ca and BL mixture, the catalytic activity of CO2 gasification was enhanced obviously. With a loading of 8%Na-BL+2%Ca, the carbon conversion of three coal samples tested reaches up to 92.9%-99.3% at 950℃ within 30min. The continuous formation of alkali surface compounds such as ([-COM], [-CO2M]) and the presence of exchanged Ca, such as calcium phenolate and calcium carboxylates (COO)2Ca, contribute to the increase in catalytic efficiency, and using BL+Ca is more efficient than that adding BL only, The homogeneous model and shrinking-core model were applied to correlate the data of conversion with time and to estimate the reaction rate constants under different temperature. The corresponding reaction activation energy (Ea) and pre-exponential factor of three anthracites were estimated. It is found that Ea is in the range from 73.6 to 121.4kJ·mol^-1 in the case of BL+Ca, and 74.3 to 104.2kJ·mol^-1 when only BL was used as the catalyst, both of which are much less than that from 143.5 to 181.4kJ·mol^-1 if no catalyst used. It is clearly demonstrated that both of BL+Ca mixture and BL could be the source of cheap and effective catalyst for coal gasification.  相似文献   

11.
The biodegradation of di-n-butyl phthalate (DBF) using immobilized microbial cells was carried out in an internal airlift loop reactor with ceramic honeycomb supports. A strain that is capable of degrading DBF was isolated from the activated sludge and identified as Bacillus sp. using 16S rDNA sequential analysis. Bacillus sp. could be rapidly attached onto the ceramic honeycomb supports. The immobilized cells could effectively degrade DBF in batch and continuous experiments. When the influent concentration of DBF was 50mg·L-1, the effluent DBF reached less than 1mg·L-1 with 6h hydraulic retention time (HRT) in continuous experiment. The immobilized microbial cells could grow and accumulate through the biodegradation of DBF, and the rate of degradation is accordingly increased. The possible pathway of DBF biodegradation using immobilized cells was tentatively proposed.  相似文献   

12.
BACKGROUND: Naphthenic acids are carboxylic acid compounds of oil sands wastewaters that contribute to aquatic toxicity. Biodegradation kinetics of an individual naphthenic acid compound in two types of continuous‐flow bioreactors were investigated as a means of improving remediation strategies for these compounds. RESULTS: This study evaluates the kinetics of biodegradation of trans‐4‐methy‐1‐cyclohexane carboxylic acid (trans‐4MCHCA) using two bioreactor systems and a microbial culture developed in previous work. Using a feed concentration of 500 mg L?1 the biodegradation rate of trans‐4MCHCA in the immobilized cell bioreactor was almost two orders of magnitude higher than that in a continuously stirred tank bioreactor. The maximum reaction rates of 230 mg (L d)?1 at a residence time of 1.6 d (40 h) and 22 000 mg (L d)?1 at a residence time of 2.6 h were observed in the continuously stirred tank and immobilized cell bioreactors, respectively. In a second immobilized cell system operating with a feed concentration of 250 mg L?1, a comparable maximum reaction rate (21 800 mg (L d)?1) was achieved at a residence time of 1.0 h. CONCLUSION: The use of immobilized cell bioreactors can enhance the biodegradation rate of naphthenic acid compounds by two orders of magnitude. Further, biodegradation greatly reduces the toxicity of the effluent wastewater. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
BACKGROUND: A novel bacterial strain, Gulosibacter sp. YZ4, has been isolated from activated sludge. Its application potential for phenol biodegradation has not yet been reported, therefore, in this study, biodegradation tests using strain YZ4 were executed under different conditions. RESULTS: The strain was identified as a new member of the genus Gulosibacter and nominated as Gulosibacter sp. YZ4. Phenol biodegradation tests showed that strain YZ4 could thoroughly biodegrade 1000 mg L?1 phenol across a wide temperature range from 10 to 42 °C and pH range 5 to 11. Degradation of 1000 mg L?1 phenol was not inhibited by the coexistence of p‐cresol or quinoline. During phenol degradation, strain YZ4 excreted both phenol hydroxylase and catechol 1,2‐dioxygenase to efficiently metabolize phenol. At 36 °C, pH 7.5, strain YZ4 could effectively degrade phenol at concentrations as high as 2000 mg L?1 within 76 h. Haldane's model with the parameters obtained from the experiments could successfully describe the behavior of the phenol biodegradation by the strain YZ4. CONCLUSIONS: The strain YZ4 has a high potential for applications in phenol wastewater treatment in view of its adaptability to temperature and pH fluctuations and great tolerance to other coexistent toxics. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
BACKGROUND: Using a suspended or immobilized microbial community obtained through chemostat selection from agricultural soils formerly treated with triazinic herbicides, the atrazine biodegradation kinetics in continuous aerobic reaction systems was studied. RESULTS: When microbial cells were continuously cultivated on atrazine as the sole nitrogen and carbon source, atrazine removal efficiencies ηATZ near to 100% were reached, although accumulation of metabolic byproducts was detected. The fluidized‐bed biofilm reactor allowed atrazine removal rates RV, ATZ higher than that permitted by suspended cell cultures with similar removal efficiencies. In this system, the highest volumetric removal rate was obtained (RV, ATZ = 12.2 mg L?1 h?1), with herbicide removal efficiencies ηATZ near 100% and reduced accumulation of byproducts. CONCLUSIONS: With the operational conditions probed in continuous suspended‐cell culture, increasing the C:N ratio in the inflowing medium resulted in higher cell growth yields but not in better atrazine removal rates. Kinetic results showed that for similar working conditions higher RV, ATZ values and reduced amounts of degradation byproducts of recalcitrant organic compounds could be expected with multi‐stage biofilm reactors. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
BACKGROUND: This study investigated the treatment of ampicillin (AMP)‐loaded wastewater in airlift reactors where biofilms were developed on granular activated carbon (GAC). A series of batch experiments were thus carried out in order to differentiate potentials of adsorption and biodegradation which would jointly contribute to the AMP removal. RESULTS: Results showed that almost all influent AMP was removed in two reactors supplemented with 4 and 8 mg L?1 AMP, respectively. Batch experiments revealed that the percentage of the AMP removed through biodegradation increased along with the development of biofilms on GAC. For the mature biofilm‐covered GAC, adsorption accounted for about 60% of the observed AMP removal, whereas the other 40% could be attributed to biodegradation. Possible degraders of AMP were also identified, such as Acinetobacter sp., Flavobacterium sp., Pseudoxanthomonas sp., Delftia sp. and Sphingobium sp. CONCLUSION: The airlift biofilm reactor with GAC as carrier would be a feasible technology for treating AMP‐loaded wastewater due to the joint action of adsorption and biodegradation of AMP by the biofilm‐covered GAC. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
Alkalinity is one of the most important parameters that influence microbial metabolism and activity during sulfate-laden wastewater biological treatment. To comprehensively understand the structure and dynamics of functional microbial community under alkalinity changes in sulfate-reducing continuous stirred tank reactor (CSTR), fluorescent in situ hybridization (FISH) technique was selected for qualitative and semi-quantitative analysis of functional microbial compositions in activated sludge. During 93d of bioreactor operation, the influent alkalinity was adjusted by adding sodium bicarbonate from 4000mg·L^-1 down to 3000mg·L^-1, then to 1500mg·L^-1, whereas other parameters, such as the loading rates of chenucal oxygen demand (COD) and sulfate (SO4^2-), hydraulic retention time (HRT), and pH value, were continuously maintained at 24g·L^-1·d^-1 and 4.8g·L^-1·d^-1, 10h,and about 6.7, respectively. Sludge samples were collected during diflerent alkalinity levels, and total Bacteria, tlae sulfate-reducing bacteria (SRB), and four SRB genera were demonstrated with 16S ribosomal .RNA-targeted oligonucleotide probes. The results indicated that bioreactor started-up successfully in 30d. The two instances ot drop in alkalinity resulted in the fluctuation of sulfate removal rate. The diversity of SRB community showed significant shift, and the alteration of microbial community directly resulted in the corresponding statuses of bioreactor. The dominant genera during the bioreactor start-up and alkalinity drops were Desulfovibrio, Desulfobacter, Desulfovibrio, Desulfobacter, and Desulfovibrio, respectively. In addition, the acetotrophic SRB sutterecl more trom me reduction of alkalinity than the non-acetotrophic SRB. This strategy can present the functional microbial community structure during start-up and alkalinity drop stages, and provides a powerful theoretical guideline for optimization and adjustment of bioreactor, as well.  相似文献   

17.
BACKGROUND: The present work aims to study the production of lignin peroxidase (LiP) enzyme by Comamonas sp UVS using various media, and lignocellulosic waste materials, and its effect on decolorization of Direct Blue GLL (DBGLL). RESULTS: Yeast extract medium was found to be more effective for the production of LiP and also for the decolorization of DBGLL. The bagasse powder along with yeast extract induced LiP activity. Comamonas sp UVS decolorized DBGLL dye (50 mg L?1) within 13 h at static condition in YE broth. It could degrade up to 300 mg L?1 of dye within 55 h. The maximum rate (Vmax) of decolorization was 12.41 ± 0.55 mg dye g cell?1 h?1 with the Michaelis constant (Km) value as 6.20 ± 0.27 mg L?1. The biodegradation was monitored by UV‐Vis, GC‐MS and HPLC. CONCLUSION: The use of agricultural by‐products for the activity enhancement of the ligninolytic enzymes is a cost effective process. It also resolves the problem of the disposal of agro‐residues. This system can be applied for the degradation of different recalcitrant compounds. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
Slop wax waste by-product obtained through the lube oil manufacture was subjected to biotreatment using five isolated Bacillus species at 30 °C and various incubation periods, 7, 14 and 21 days. The results obtained from HPLC for the 15 samples showed that the aromatic contents decreased, especially, for that treated with Bacillus sp. MAM-27 which degrade PAHs faster at 1% (w/v) concentration of slop wax waste by-product and exhibited high biodegradation ability within 1 week. Bacillus sp. MAM-27 degraded 99.9% of PAHs, while Bacillus sp. MAM-24 degrades 99.8% of PAHs within 2 weeks and then the degradation ability is slightly increased afterwards. The gas chromatographic analysis of the samples before and after treatment with Bacillus spp. showed that, the aromatics, naphthenes and iso-alkanes were more degradable than saturated n-paraffins. Treatment by Bacillus sp. MAM-27 and Bacillus sp. MAM-24 can be an effective method for biodegradation of slop wax waste by-product leading to paraffin waxes match with plastic paraffin wax according to USSR 1121284 specifications.  相似文献   

19.
Aerobic degradation or polishing is an essential step in the combined anaerobic/aerobic treatment of wastewater. In this study, a type of porous glass beads was used for immobilization of microbial cells in a three‐phase aerobic fluidized bed reactor (AFBR) with an external liquid circulation. The effects of superficial gas and liquid velocities on bed expansion, solid and gas hold‐ups and specific oxygen mass transfer rate, kLa, were investigated. A tracer study showed that the mixing and flow pattern in the 8 dm3 reactor could be simulated by a non‐ideal model of two continuous stirred tank reactors (CSTRs) in series. By treating an effluent from an upflow anaerobic sludge blanket (UASB) digester, the distribution of suspended and immobilized biomass in the reactor as well as the kinetics of COD removal were determined. The specific oxygen mass transfer rate, kLa, at a superficial gas velocity of 0.7 cm s−1 dropped by about 30% from 32 h−1 in tap water to 22 h−1 after a carrier load of 15% (v/v) was added. The measured kLa further dropped by about 20% to 18 h−1 in the wastewater, a typical value of the bubbling fermenters with no stirring. Compared with the aerobic heterotrophs under optimum growth conditions, the microbes in this reactor which was fed with anaerobic effluent plus biomass behaved like oligotrophs and showed slow specific COD removal rates. This might be attributed to the presence of a significant amount of obligate anaerobes and facultative organisms in the aerobic reactor. This was confirmed by a relatively low intrinsic oxygen uptake rate of the microbial population in the reactor, 94 mg O2 dm−3 h−1 or 19 mg O2g VS−1 h−1. © 1999 Society of Chemical Industry  相似文献   

20.
新筛选菌种Delftia sp.XYJ5生物降解苯胺的途径   总被引:6,自引:1,他引:5       下载免费PDF全文
A promising gram-negative bacterial strain for the biodegradation of aniline as the sole carbon, nitrogen and energy sources was successfully isolated and identified as Delftia sp. XYJ6. The optimal temperature and pH for both the growth of Delftia sp. XYJ6 and the biodegradation of aniline were 30°C and 7.0, respectively. Initial aniline of 2000 mg•L-1 could be completely removed by the strain at 22 h, which showed that Delftia sp. XYJ6 had a strong ability in the biodegradation of aniline. It indicated that aniline was firstly converted to catechol catalyzed by aniline dioxygenase as a first product, which was then further biodegraded to cis,cis-muconic acid catalyzed by the catechol 1,2-dioxygenase of Delftia sp. XYJ6 as a second product. Cis,cis-muconic acid could also be further biodegraded to other small compound again. The pathway for the biodegradation of aniline by Delftia sp. XYJ6 was not previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号