首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquitous nature of Listeria monocytogenes and its ability to grow at refrigerated temperature makes L. monocytogenes a significant threat to the safety of ready‐to‐eat (RTE) meat products. The contamination by L. monocytogenes in RTE meat primarily occurs during slicing and packaging after cooking. The effectiveness of post‐package decontamination technology such as in‐package thermal pasteurization, irradiation, and high‐pressure processing are discussed. Formulating meat products with antimicrobial additives is another common approach to control L. monocytogenes in RTE meat. Irradiation is an effective technology to eliminate L. monocytogenes but can influence the quality of RTE meat products significantly. The effect of irradiation or the combination of irradiation and antimicrobials on the survival of L. monocytogenes and the quality of RTE meat is discussed.  相似文献   

2.
This paper offers a concise review of technical and operational concepts underpinning commercialization of minimally processed functional foods (FFs), foods with fresh‐like qualities commanding premium prices. The growing number of permitted nutritional content/health claims, many of which relate to well‐being, coupled with emerging extraction and food processing technologies offers new exciting opportunities for small and medium size enterprises (SMEs) specializing in fresh produce to play an active role in the health market. Supporting SMEs, governments could benefit from savings in healthcare costs and value creation in the economy. Consumers could benefit from novel FF formats such as refrigerated RTE (ready‐to‐eat) meals, a variety of fresh‐like meat‐, fish‐, and egg‐based products, fresh‐cut fruits and vegetables, cereal‐based fermented foods and beverages. To preserve these valuable commodities, mild biological (enzymatic treatment, fermentation and, bio‐preservation) and engineering solutions are needed. The latter include nonthermal techniques such as high‐pressure treatment, cook‐chill, sous‐vide, mirco‐encapsulation, vacuum impregnation and others. “De‐constructive” culinary techniques such as 3D food printing and molecular gastronomy as well as developments in nutrigenomics and digital technologies facilitate novel product formats, personalization and access to niche markets. In the operational sense, moving from nourishment to health improvement demands a shift from defensive market‐oriented to offensive market‐developing strategies including collaborative networks with research organizations.  相似文献   

3.
Consumer appeal for ready‐to‐eat (RTE) products is forecast to grow rapidly over the next 5 years as consumers demand convenient snacks with exciting sensory and textural properties. Extrusion technology has been used extensively in the production of cereal RTE snacks due to its ease of operation and ability to produce a variety of textures and shapes which appeal to consumers. Many of the existing RTE products are relatively high in sugar and salt, thus being regarded as energy dense but nutritionally poor foods. However, there exists a potential to manipulate the nutritional status of extruded RTEs by altering the digestion potentials of starch and protein, and by the incorporation of bioactive components such as dietary fibre. The review article explores some of the recent research in this field and illustrates opportunities by which the global food industry could react to consumers' requirements for healthful RTE snack products in the coming years.  相似文献   

4.
The increased demand for low‐sodium ready‐to‐eat (RTE) meat products highlights the need for new strategies to ensure food safety. The application of essential oils (EOs) as natural antimicrobials in the meat industry has been suggested to prevent or control cross‐contamination during meat processing operations. This work aims to quantify and model the transfer of Salmonella Enteritidis during the slicing procedure of RTE turkey products treated with thyme essential oil (TEO) at a concentration of 0.1% (v/w). Two products were subjected to the slicing procedure with slicer blades inoculated with S. Enteritidis at 108 cfu/mL. The Weibull and modified Weibull predictive models were fitted to the transfer data. Twenty slices were sampled and showed positive with bacteria, indicating cross‐contamination. The number of cells transferred per slice decreased logarithmically during the assays. The transfer models, based on the Weibull model, were suitable to describe the bacterial transfer trend on slices in most cases. TEO treatment reduced the transfer of Salmonella on a preservative free RTE turkey product. The predictive models obtained in this study can help food‐quality staff and managers on the design and assessment of processes to guard RTE turkey products against Salmonella. This work supports the addition of EOs to reduce microbial risk in RTE meat products.  相似文献   

5.
The occurrence of Listeria monocytogenes in ready‐to‐eat (RTE) fish products is well documented and represents an important food safety concern. Contamination of this pathogen in vacuum‐packed (VP) smoked fish products at levels greater than the RTE food limit (100 CFU/g) has been traced to factors such as poor sanitary practices, contaminated processing environments, and temperature abuse during prolonged storage in retail outlets. Intervention technologies including physical, biological, and chemical techniques have been studied to control transmission of L. monocytogenes to these products. High‐pressure processing, irradiation, and pulsed UV‐light treatment have shown promising results. Potential antilisterial effects of some sanitizers and combined chemical preservatives have also been demonstrated. Moreover, the concept of biopreservation, use of bioactive packaging, and a combination of different intervention technologies, as in the hurdle concept, are also under consideration. In this review, the prevalence, routes of contamination, and potential intervention technologies to control transmission of L. monocytogenes in VP smoked fish products are discussed.  相似文献   

6.
ABSTRACT: Over one‐half of foodborne illnesses are believed to be viral in origin. The ability of viruses to persist in the environment and foods, coupled with low infectious doses, allows even a small amount of contamination to cause serious problems. An increased incidence of foodborne illnesses and consumer demand for fresh, convenient, and safe foods have prompted research into alternative food‐processing technologies. This review focuses on viral inactivation by both traditional processing technologies such as use of antimicrobial agents and the application of heat, and also novel processing technologies including high‐pressure processing, ultraviolet‐ and gamma‐irradiation, and pulsed electric fields. These industrially applicable control measures will be discussed in relation to the 2 most common causes of foodborne viral illnesses, hepatitis A virus and human noroviruses. Other enteric viruses, including adenoviruses, rotaviruses, aichi virus, and laboratory and industrial viral surrogates such as feline caliciviruses, murine noroviruses, bacteriophage MS2 and ΦX174, and virus‐like particles are also discussed. The basis of each technology, inactivation efficacy, proposed mechanisms of viral inactivation, factors affecting viral inactivation, and applicability to the food industry with a focus on ready‐to‐eat foods, produce, and shellfish, are all featured in this review.  相似文献   

7.
Milk is highly perishable and deteriorates rapidly during storage. Although the thermal processing technologies successfully inactivate many enzymes and microorganisms up to a required level, they can negatively affect the natural flavour of dairy foods and decrease their nutritional value. Alternative nonthermal technologies have been established as an interesting approach to produce safe and healthy dairy products, without compromising their nutritional quality. These techniques have the ability to inactivate milk enzymes without affecting the milk quality. In addition, the combination of two different nonthermal techniques and mild heating has proven to be more effective to provide safety to milk when compared to the treatments alone. This review aims to evaluate the impact of nonthermal technologies, in particular, ultrasound, pulsed electric field, high‐pressure processing and ultraviolet irradiation on milk enzymes.  相似文献   

8.
For the past two decades, consumer demand for minimally processed seafoods with good sensory acceptability and nutritive properties has been increasing. Nonthermal food processing and preservation technologies have drawn the attention of food scientists and manufacturers because nutritional and sensory properties of such treated foods are minimally affected. More importantly, shelf‐life is extended as nonthermal treatments are capable of inhibiting or killing both spoilage and pathogenic organisms. They are also considered to be more energy‐efficient and to yield better quality when compared with conventional thermal processes. This review provides insight into the nonthermal processing technologies currently used for shelf‐life extension of seafoods. Both pretreatments such as acidic electrolyte water and ozonification and processing technologies, including high hydrostatic pressurization, ionizing radiation, cold plasma, ultraviolet light, and pulsed electric fields, as well as packaging technology, particularly modified atmosphere packaging, have been implemented to lower the microbial load in seafood. Thus, those technologies may be the ideal approach for the seafood industry, in which prime quality is maintained and safety is assured for consumers.  相似文献   

9.
Over the last several decades, γ‐aminobutyric acid (GABA) has attracted much attention due to its diverse physiological implications in plants, animals, and microorganisms. GABA naturally occurs in plant materials and its concentrations may vary considerably, from traces up to μmol/g (dry basis) depending on plant matrix, germination stage, and processing conditions, among other factors. However, due to its important biological activities, considerable interest has been shown by both food and pharmaceutical industries to improve its concentration in plants. Natural and conventional treatments such as mechanical and cold stimulation, anoxia, germination, enzyme treatment, adding exogenous glutamic acid (Glu) or gibberellins, and bacterial fermentation have been shown effective to increase the GABA concentration in several plant materials. However, some of these treatments can modify the nutritional, organoleptic, and/or functional properties of plants. Recent consumer demand for food products which are “healthy,” safe and, having added benefits (nutraceuticals/functional components) has led to explore new ways to improve the content of bioactive compounds while maintaining desirable organoleptic and physicochemical properties. Along this line, nonthermal processing technologies (such as high‐pressure processing, pulsed electric fields, and ultrasound, among others) have been shown as means to induce the biosynthesis and accumulation of GABA in plant foods; and the main findings so far reported are presented in this review. Moreover, the most novel tools for the identification of metabolic response in plant materials based on GABA analysis will be also described.  相似文献   

10.
Light‐emitting diodes (LEDs) possess unique properties that are highly suitable for several operations in the food industry. Such properties include low radiant heat emissions; high emissions of monochromatic light; electrical, luminous, and photon efficiency; long life expectancy, flexibility, and mechanical robustness. Therefore, they reduce thermal damage and degradation in crops and foods and are suitable in cold‐storage applications. Control over spectral composition of emitted light results in increased yields and nutritive content of horticultural or agricultural produce. Recently, LEDs have been shown to preserve or enhance the nutritive quality of foods in the postharvest stage, as well as manipulate the ripening of fruits, and reduce fungal infections. LEDs can be used together with photosensitizers or photocatalysts to inactivate pathogenic bacteria in food. UV LEDs, which are rapidly being developed, can also effectively inactivate pathogens and preserve food in postharvest stages. Therefore, LEDs provide a nonthermal means of keeping food safe without using chemical sanitizers or additives, and do not accelerate bacterial resistance. This article provides a review of the technology of LEDs and their role in food production, postharvest preservation, and in microbiological safety. Several challenges and limitations are identified for further investigation, including the difficulty in optimizing LED lighting regimens for plant growth and postharvest storage, as well as the sensory quality and acceptability of foods stored or processed under LED lighting. Nevertheless, LED technology presents a worthy alternative to current norms in lighting for the growth and storage of safe and nutritious food.  相似文献   

11.
This study was conducted to evaluate protein quality, acceptability and storage stability of processed cereal–bean–sardine composite foods for pre‐school age children in Tanzania. Four composite products namely corn–bean–sardine meal (CBSM), bean meal (BM), sorghum–bean–sardine meal (SBSM) and rice–bean–sardine meal (RBSM) were formulated to maximize the amino acid score for pre‐school age children and were processed by extrusion, drum‐processing and conventional cooking. The products were evaluated for true protein digestibility (TPD) and protein digestibility‐corrected amino acid score (PDCAAS). The TPD and PDCAAS were highest in the extruded products. The TPD values for the products ranged from 82 to 93%. The PDCAAS values for the composite foods were 64–86% and were greater than the minimum value of 60% recommended by FAO/WHO/UNU. There were no significant (p > 0.05) variations in the amino acid contents for foods processed by extrusion, drum‐processing or conventional cooking. Threonine was most limiting in the CBSM, SBSM and RBSM while methionine + cysteine were most limiting in the BM. Sensory evaluation showed that, relative to the traditional cornmeal—Uji, the extruded CBSM and SBSM had significantly superior (p ≤ 0.05) texture and highly acceptable color and taste. Storage of the products up to 16 weeks at 38 °C resulted in a small but significant increase (p ≤ 0.05) in the malondialdehyde concentrations; nevertheless, the levels remained within the acceptable range found in processed commercial supplements. Total acids, pH and organoleptic attributes did not change significantly (p > 0.05) during storage and the foods were acceptable to the end of the storage period. Copyright © 2005 Society of Chemical Industry  相似文献   

12.
Quality deterioration of fresh or processed foods is a major challenge for the food industry not only due to economic losses but also due to the risks associated with spoiled foods resulting, for example, from toxic compounds. On the other hand, there are increasing limitations on the application of synthetic preservatives such as antioxidants in foods because of their potential links to human health risks. With the new concept of functional ingredients and the development of the functional foods market, and the desire for a “clean” label, recent research has focused on finding safe additives with multifunctional effects to ensure food safety and quality. (‐)‐Epigallocatechin‐3‐gallate (EGCG), a biologically active compound in green tea, has received considerable attention in recent years and is considered a potential alternative to synthetic food additives. EGCG has been shown to prevent the growth of different Gram‐positive and Gram‐negative bacteria responsible for food spoilage while showing antioxidant activity in food systems. This review focuses on recent findings related to EGCG separation techniques, modification of its structure, mechanisms of antioxidant and antimicrobial activities, and applications in preserving the quality and safety of foods.  相似文献   

13.
Pulses provide economic and health benefits to people in many countries around the world; however, their adoption in western diets, particularly in processed and formulated foods, is limited. One strategy to increase the level of pulses in western diets is to improve pulse accessibility to the ready-to-eat (RTE) food market sector. Pulses have compositional and structural differences when compared to cereals and behave differently during processing. While there have been numerous studies on pulses processed using traditional processing methods, there are limited studies describing processing of pulses as a major ingredient in RTE forms such as flakes. To understand the full processing potential of pulses, systematic studies are required using commercial-scale RTE pilot processing equipment coupled with fundamental property determination techniques to evaluate the effects of processing and pulse material on pulse flake attributes. In-depth studies of pulse properties and their processability are likely to result in the production of high-quality pulse-based foods with superior health benefits. This review explores the current and potential opportunities for processing pulses with a focus on flake products. The roles of pulse type and major structure-forming components such as fiber, carbohydrates, and proteins on end-product quality of processed pulses are discussed.  相似文献   

14.
Recent years have shown a tremendous increase in consumer demands for healthy, natural, high-quality convenience foods, especially within the fish and seafood sector. Traditional processing technologies such as drying or extensive heating can cause deterioration of nutrients and sensory quality uncompilable with these demands. This has led to development of many novel processing technologies, which include several mild technologies. The present review highlights the potential of mild thermal, and nonthermal physical, and chemical technologies, either used alone or in combination, to obtain safe seafood products with good shelf life and preference among consumers. Moreover, applications and limitations are discussed to provide a clear view of the potential for future development and applications. Some of the reviewed technologies, or combinations thereof, have shown great potential for non-seafood products, yet data are missing for fish and seafood in general. The present paper visualizes these knowledge gaps and the potential for new technology developments in the seafood sector. Among identified gaps, the combination of mild heating (e.g., sous vide or microwave) with more novel technologies such as pulsed electric field, pulsed light, soluble gas stabilization, cold plasma, or Ohmic heat must be highlighted. However, before industrial applications are available, more research is needed.  相似文献   

15.
Fish industry by‐products can account for up to 75% of the catch depending on postharvest or industrial preparation processes. Different terms such as ‘fish waste’, ‘by‐product’ and ‘rest raw materials’ have been used. The review gives an overview of value‐added processes that provide an alternative to low‐profit uses such as silage, fish meal and mince. The preparation of different by‐product fractions such as fish blood, marine lipids, omega‐3 fatty acids, fish protein fractions and bioactive components with nutraceutical potential, i.e. antioxidants and bioactive peptides, is considered. There are several future opportunities for the preparation of high‐value by‐products such as enzymes, minerals and other bioactive substances including hydroxyapatite, phosphorus, taurine and creatine. Both regulatory status and future market potential need to be considered. In addition, there is a need for technologies that maintain good quality by‐products and ‘simple’ processes to produce bulk products for further refining.  相似文献   

16.
High pressure (HP) treatment has emerged as a novel, additive-free food preservation technology. It has been scientifically and commercially proven that HP can produce microbially safe and stable products with improved quality characteristics such as enhanced flavor and color. Recent studies have focused on the effects of HP on health attributes and allergenic potential of foodstuff to develop the next generation of convenience foods. This review provides an overview on the current knowledge of HP treatment to improve the extraction and bioavailability of bioactive compounds, to reduce allergenicity, to retain essential fatty acids, to reduce the salt content, and to reduce formation of processing contaminants. HP has shown encouraging potential to manipulate the functionality, extractability, allergenicity and bioavailability of micronutrients and components in a diverse variety of foods. However, the underlying principles and mechanisms are not yet fully understood and warrant further investigation. More studies are needed to optimize HP treatment conditions and develop a mechanistic understanding of the impacts of HP on different bioactive compounds in food products with health benefits. This can open the doors to new HP applications in the food industry.  相似文献   

17.
Because of the continuous increase in the prevalence of gluten‐related disorders, selection of wheat with a low content of immunogenic gluten epitopes could be an innovative alternative for prevention. In this review, the focus is on literature data concerning the deallergenization tools of wheat, which are mainly related to breeding approaches (classic and advanced) and processing operations (germination and fermentation). Until now, no safe wheat genotype has been identified, whereas decreasing wheat allergenicity is possible. On the other hand, the decrease of gluten or some of its epitopes can strongly affect technological properties. Thus, obtaining celiac‐safe gluten without affecting the technological properties of wheat could be considered as a new challenge that scientists will be facing. Celiac‐safe wheat‐based product development could be a great revolution in the market of foods for special medical purposes. The present paper is aiming to: (a) review the strategies and the approaches used, or that can be used, for developing low allergenic wheat: their utilities and limits were also discussed and (b) screen the impact of gluten reduction or removal on the quality of wheat end‐use products.  相似文献   

18.
Computer vision‐based image analysis has been widely used in food industry to monitor food quality. It allows low‐cost and non‐contact measurements of colour to be performed. In this paper, two computer vision‐based image analysis approaches are discussed to extract mean colour or featured colour information from the digital images of foods. These types of information may be of particular importance as colour indicates certain chemical changes or physical properties in foods. As exemplified here, the mean CIE a* value or browning ratio determined by means of computer vision‐based image analysis algorithms can be correlated with acrylamide content of potato chips or cookies. Or, porosity index as an important physical property of breadcrumb can be calculated easily. In this respect, computer vision‐based image analysis provides a useful tool for automatic inspection of food products in a manufacturing line, and it can be actively involved in the decision‐making process where rapid quality/safety evaluation is needed. © 2013 Society of Chemical Industry  相似文献   

19.
The objective of this study was to determine the percentage oxygen consumption of fresh, respiring ready‐to‐eat (RTE) mixed leaf salad products (Iceberg salad leaf, Caesar salad leaf, and Italian salad leaf). These were held under different modified atmosphere packaging (MAP) conditions (5% O2, 5% CO2, 90% N2 (MAPC—commercial control), 21% O2, 5% CO2, 74% N2 (MAP 1), 45% O2, 5% CO2, 50% N2 (MAP 2), and 60% O2, 5% CO2, 35% N2 (MAP 3)) and 4 °C for up to 10 d. The quality and shelf‐life stability of all packaged salad products were evaluated using sensory, physiochemical, and microbial assessment. Oxygen levels in all MAP packs were measured on each day of analysis using optical oxygen sensors allowing for nondestructive assessment of packs. Analysis showed that with the exception of control packs, oxygen levels for all MAP treatments decreased by approximately 10% after 7 d of storage. Oxygen levels in control packs were depleted after 7 d of storage. This appears to have had no detrimental effect on either the sensory quality or shelf‐life stability of any of the salad products investigated. Additionally, the presence of higher levels of oxygen in modified atmosphere packs did not significantly improve product quality or shelf‐life stability; however, these additional levels of oxygen were freely available to fresh respiring produce if required. This study shows that the application of optical sensors in MAP packs was successful in nondestructively monitoring oxygen level, or changes in oxygen level, during refrigerated storage of RTE salad products.  相似文献   

20.
There is a rising demand for fresh‐cut convenience products with high quality and nutritional standards that needs to be met by the fresh‐cut industry. It is well known that harvest and postharvest handling of fresh produce has a paramount impact on its quality and storage, although most of the existing literature has focused on these impacts related only to fresh produce that is destined for the final consumers. Indeed, current harvest methods and postharvest technologies have improved fruit and vegetable handling and distribution processes by slowing down physiological processes and senescence. Nonetheless, these technologies and methods may influence the quality of fresh produce as raw material for fresh‐cut processing as a result of the dynamic responses of fresh produce to handling procedures and treatments. Here, we review the existing literature on the challenges facing the fresh‐cut industry, focusing on the impact of harvest, maturity, and handling of fruit and vegetables on the quality of raw materials, as well as the implications for fresh‐cut products. The review also highlights areas for further research with the aim of enhancing the sensorial, nutritional and biochemical quality of such products. © 2018 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号