首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
 在建的白鹤滩地下洞室群规模巨大,具有“高边墙、大跨度、高地应力、复杂地质条件”的特点,在高应力开挖卸荷过程中,遭遇到延展性强且力学性质差的多条大型错动带的影响,使得含错动带岩体遭遇到不同程度的变形破坏问题。结合地质、施工、监测、测试及数值分析等资料,首先从错动带产状、成因和自身特点等方面对错动带的工程特性进行详细论述,然后对因错动带导致工程岩体结构变形失效或破坏的实例进行归纳总结,从结构控制因素上将含错动带岩体的破坏模式划分为塑性挤出型拉伸破坏、结构应力型塌方/掉块和剪切滑移型破坏3种类型;其次,研究分析各类含错动带岩体的破坏特征与机制,包括时空演化过程、形态特征、破坏规模等,初步揭示3种破坏模式对应的力学机制;最后,给出典型的含错动带岩体破坏模式分析预测和支护探讨实例,从而为白鹤滩地下厂房施工过程中含错动带岩体不稳定性问题的预测和调控提供借鉴。上述研究成果对于高应力条件下类似的地下洞室群含错动带岩体的稳定性研究具有重要的参考价值和指导意义。  相似文献   

2.
高地应力条件下大型地下洞室群稳定性综合研究   总被引:8,自引:3,他引:5  
 从认识论的角度提出数值仿真技术服务于地下工程实践的PFP分析方法,并随拉西瓦水电站地下厂房工程开挖进度分3个阶段对洞群围岩稳定性进行系统地分析和预测。研究成果表明:在高地应力硬岩洞室群开挖过程中,不同部位围岩位移具有明显的空间差异性和时间渐变性;岩体中应力表现出一定的波动性、转移性;多洞室交叉使得围岩松弛区域具有一定的特殊性;围岩破损模式和深度也具有区域差异性等。其成果为洞室开挖与围岩支护改进提供了科学依据,也被实际洞室开挖过程揭示的变形规律和围岩开裂、掉块等破坏模式所证实。这些高地应力下硬岩力学行为规律对其他类似地下工程围岩稳定性研究也具有较好的借鉴意义。  相似文献   

3.
 针对高地应力下围岩变形破坏的特殊性以及大型地下洞室群开挖支护优化计算量大的特点,在三维弹塑性数值计算的基础上,采用反映高地应力下脆性岩石变形破坏特点的新本构模型,提出基于弹性释放能、塑性区体积、洞室周边位移与支护费用的地下洞室群开挖顺序与支护参数组合方案的综合优化新指标,综合集成粒子群与支持向量机的智能技术,提出高地应力下地下洞室群开挖顺序与支护参数的智能优化新方法。该方法通过典型施工方案的数值计算构建学习样本,采用支持向量机方法对样本进行学习与预测,建立起施工方案与综合优化指标之间的非线性映射关系,在具有一定约束条件的全局空间下,通过粒子群优化算法搜索出开挖顺序与支护参数的全局最优组合方案。将该方法应用于高地应力区黄河拉西瓦水电站地下厂房洞室群的开挖顺序和支护参数优化分析,结果表明该方法的可行性。  相似文献   

4.
 依据官地水电站大型地下厂房洞室群地应力高、围岩坚硬、结构面发育等特点,在地应力特征、围岩结构特征分析的基础上,结合围岩变形监测成果和三维数值仿真分析成果,对洞室围岩变形破坏特征进行归纳总结,并系统提出高地应力条件下地下厂房洞室群的布置设计、开挖支护设计和施工对策。建议高地应力条件下,洞室纵轴线的选择应兼顾最大主应力方位和围岩主要结构面、采用较大的洞室间距和较大的顶拱矢跨比、采用合理的开挖方式和开挖顺序、适当提高喷混凝土强度等级、延时浇筑岩壁吊车梁和母线洞衬砌、合理确定锚索张拉力锁定值,对具备岩爆条件的洞室围岩先初喷50~60 mm厚的钢纤维混凝土后再实施系统锚杆和挂网喷混凝土层到设计厚度等。上述建议对于高地应力条件下类似地下厂房洞室群的设计与施工具有重要的指导意义和应用价值。  相似文献   

5.
大型洞室群围岩破坏模式的动态识别与调控   总被引:1,自引:0,他引:1  
 在归纳地下工程围岩破坏模式分类、分析方法和控制措施等方面研究成果的基础上,建立大型地下洞室群围岩破坏模式的分类方法。该分类方法充分考虑大型洞室群大尺寸、大高宽比和多洞室相互作用等特点,依据控制因素、破坏机制、发生条件3个层次归纳出18种典型的围岩破坏模式,给出每种破坏模式的主要稳定性分析方法和针对性控制措施等方面的建议。并进一步根据大型洞室群分步开挖过程中不断更新的工程地质条件和围岩性状,提出围岩破坏模式的动态识别、复核与调控方法。该方法已成功应用于锦屏二级水电站地下厂房洞室群的开挖过程中围岩破坏模式识别和实时工程措施(开挖和支护)调控,实现施工过程中围岩局部不稳定性问题的识别、预测与动态调控。实践表明,该方法实用、科学和系统,可有效地指导大型地下洞室群施工过程中的开挖与支护设计动态优化,避免局部不稳定性问题的发生。  相似文献   

6.
大型地下厂房洞室群围岩稳定分析   总被引:3,自引:1,他引:3  
 锦屏一级水电站最大坝高305 m,为混凝土双曲拱坝,电站装机容量360×104 kW,总库容77.6×108 m3,调节库容49.1×108 m3,是目前已建、在建和设计中的世界最高拱坝,其设计难度处于世界最高水平。针对地下厂区围岩类别较低、结构面发育、高地应力场以及洞室群规模巨大等情况,应用损伤力学理论,对地下洞室群的稳定性进行三维非线性弹塑性损伤有限元模拟计算,以判定地下厂房洞室群布置、施工开挖顺序、围岩支护参数的合理性,并对数值模拟结果与地质力学模型试验结果进行对比分析。结果表明,数值模拟和模型试验结果基本吻合,地下厂房洞室群围岩的整体稳定状态良好。  相似文献   

7.
以某高地应力洞区岩体地质资料为依托,用弹塑性有限元分析在高地应力下大型地下3种洞室拱形(即单心圆拱、三心圆拱和椭圆拱)对拱部围岩应力的影响,计算结果表明,这种影响是非常明显的,有的应力集中系数达到3.33。无论采用何种拱形,均避不开拱座附近应力集中现象。利用围岩塑性区和应力集中系数组建灰色局势决策,并计算出各自的灰色效果测度值,依据灰色效果测度值可综合评判出,无论初始地应力侧压系数是多少,对洞室拱形而言,椭圆是最优的,其次是三心圆。  相似文献   

8.
考虑到高地应力下洞群围岩力学行为独特性和深部地下工程研究需要,提出大型洞室群岩体参数的智能反演新方法。该方法是采用弹脆塑性本构CWFS模型,以分步开挖引起的松动圈和位移增量监测信息为输入,首先通过参数敏感性分析确定待反演的参数,再建立位移增量–松动圈深度的联合适应度函数,用进化神经网络–遗传算法求得待反演参数的数值,并进行后续开挖引起的位移演化的灰色关联度分析和松动圈的实测值与计算值对比对反演结果进行检验的反分析方法。用该方法对具有高地应力特征的拉西瓦水电站花岗岩地下洞室群围岩的力学参数进行了反演,通过地下洞室群的第2~6层开挖引起的位移增量和松动圈的测试值,反演求出相关5个岩体力学参数的值。用反演所得的参数值对第7步开挖引起的位移增量和松动圈变化进行计算分析,结果表明该方法的正确性。  相似文献   

9.
高地应力条件下围岩劈裂破坏的判据及薄板力学模型研究   总被引:4,自引:0,他引:4  
 对于处在高地应力下的脆性围岩中的地下洞室群,开挖时洞室围岩容易出现纵向的劈裂裂缝,导致脆性开裂,形成劈裂性平行大裂缝组,通常会伴有剧烈的变形破坏发生,如岩爆等,将危及工程使用的安全性。首先从劈裂裂纹的贯通机制出发,在断裂力学应力强度因子分析的基础上,根据劈裂裂纹的扩展过程确定围岩发生劈裂破坏的判据,然后通过该判据判断围岩的应力状态,确定劈裂范围,并将劈裂围岩视为薄板模型。根据柯克霍夫平板理论检验薄板模型的适用性,在薄板模型的基础上建立劈裂范围内围岩的临界应力、位移的解析计算公式。以瀑布沟水电站为工程背景,将劈裂判据编成FISH语言内嵌到FLAC3D中,计算得到围岩的劈裂破损区。在此基础上利用薄板力学模型计算其临界应力和最大位移,并与数值计算结果吻合较好,表明所提出的劈裂判据和薄板力学模型能够较准确地预测围岩劈裂破坏范围和计算劈裂围岩的应力和位移,可以为高地应力下地下工程的稳定性评价及支护设计提供参考。  相似文献   

10.
 拉西瓦水电站厂房规模巨大,围岩主要为脆硬花岗岩,爆破后围岩分区明显;同时厂房区域山高坡陡,河谷狭窄,区域地应力场较高,且分布较复杂,对洞室稳定性不利。为了评判开挖后地下厂房围岩的稳定性及支护的长期安全性,以地下厂房分层开挖现场实测位移为基础,根据多点位移计实测的离洞壁不同深度位移的变化规律将厂房洞壁周边围岩分为松动区、过渡区和稳定区;然后采用每层开挖引起的增量实测位移与相应的反分析位移均方差作为目标函数,分层进行围岩力学参数反演分析,得到上、下游厂房不同的地应力参数及地下厂房在开挖每层时围岩的岩体力学参数。结合反演得到的这些地应力场与围岩力学参数,对后续开挖时厂房围岩稳定性进行评价与预测,提出拉西瓦地下厂房围岩稳定性判定标准。该标准为后续地下厂房监测变形控制提供依据,有效地指导厂房支护设计与开挖施工。  相似文献   

11.
深埋硬岩隧洞围岩的破坏模式分类与调控策略   总被引:1,自引:1,他引:0  
 根据锦屏II级水电站地下隧洞的地质条件、现场试验、数值分析和支护设计与施工全过程,建立深埋硬岩隧洞围岩的破坏模式分类方法。该分类方法依据支护要求和控制因素将深埋硬岩隧洞的破坏现象分为3个大类、9种典型破坏模式,分析各种破坏模式的发生机制、表现形态以及调控策略,重点讨论岩爆的机制以及相应的调控策略。应用该分类方法对锦屏II级水电站地下隧洞围岩的破坏模式进行识别、机制分析,相应的调控措施也得到采纳。工程实践表明,该分类方法全面、实用,为现场设计、地质和施工工程师等在深埋硬岩条件下进行隧洞开挖和支护设计优化提供具体指导方针。  相似文献   

12.
提出复杂地应力环境下大型地下洞室开挖围岩时效变形机制及其力学模拟方法。基于变形监测资料和岩体力学分析认为,中高地应力条件下岩体由高围压环境急剧转变为低围压、高应力差环境的力学机制和工程开挖引致围岩扰动破坏的空间效应是复杂地应力环境中洞室围岩时效变形的主要作用机制。采用应力释放有限单元法模拟洞室动态开挖过程,通过引入时间因子,建立开挖荷载释放与空间扰动效应的时间相关函数,提出基于时效变形过程的开挖荷载分时分级释放方法和基于主、次级开挖松动区的围岩变形模量劣化模型。工程实例表明:该方法通过将开挖荷载释放与开挖扰动空间效应耦合计算,能够合理有效地模拟大型地下洞室施工开挖全过程围岩的时效变形力学行为,对于理解和控制复杂地应力环境大型地下洞室高边墙变形破坏行为和时空效应,优化洞室施工开挖支护与监测反馈等具有一定的应用价值和实践意义。  相似文献   

13.
官地水电站地下厂房属典型的硬岩地区深埋大型地下洞室群,其重要特点是同时面临高地应力和结构面发育这2个不利条件,实测最大主应力为25~35 MPa,厂区无大的断层和软弱结构面,但错动带和裂隙十分发育。通过对地下洞室群施工过程中出现的围岩局部失稳破坏现象进行全面的分析整理,对三大洞室的岩体结构特征和围岩变形破坏模式进行系统的分析、比较和总结,从而对影响围岩稳定的两大控制因素——地应力和岩体结构对官地地下厂房洞室群围岩稳定的影响程度和方式进行分析和对比。研究表明,由于三大洞室围岩类别以II类为主,岩体结构以块状~次块状结构为主,围岩具有较高的力学强度和强度应力比,从而具有较强的抵抗应力破坏的能力;岩体结构对地下厂房围岩变形与稳定的控制作用较地应力则更为明显,地下洞室群开挖过程中出现的局部失稳或较大变形多与不利方位的结构面直接相关。三大洞室围岩岩体结构特征总体上的相似性非常明确,反映在三大洞室围岩的变形特征和破坏模式上具有很好的统一性。然而,三大洞室的岩体结构特征也存在一定的差异,导致岩体结构影响围岩稳定的方式和程度有所不同。结构面发育造成的另一个不利影响是为坚硬岩体在高地应力条件下产生卸荷时效变形提供了内部条件。因此,在强度应力比较高的硬岩地区,应充分重视岩体结构及其演化对围岩变形和稳定的控制效应。  相似文献   

14.
围岩破坏特征与地应力方向关系研究   总被引:2,自引:0,他引:2  
 结合实际工程需要,建立片帮分级标准,在此基础上提出由片帮发育部位和发育程度推测主应力方向的相关方法;同时,结合室内试验、切片扫描等手段,深入研究片帮面上拉张裂纹的成因机制,给出由拉张裂纹延伸方向确定初始地应力方向的方法。最后以我国西南一水电工程为例,基于坝址区片帮和拉张裂纹的调研结果,推测坝址区大主应力方向及其变化规律,对地应力测试工作形成有效补充,为后期工程设计提供支撑。  相似文献   

15.
高地应力区大型水电硐室围岩工程地质特征较一般地应力状态下差异很大,相应围岩分类评价思路及体系应有所差异,但目前水电工程围岩分类法(简称HC法)对评价高地应力区尚存在诸多缺陷,造成评价结果与真实情况存在一定差距。以高地应力区 HC 法合理应用为研究目的,首先,对该方法存在诸多问题全面分析,并提出相应修正建议;其次,通过广泛搜集、整理目前大型水电工程地应力状况资料,对地应力分类评价指标及标准提出新的建议;而后,针对 HC 法对高地应力区的评价思路与方法进行优化,提出相应优化方法;最后,以在建的猴子岩水电站主厂房为分析实例,采用对比分析方法印证该优化方法的适宜性。该研究方法对于推动 HC 法满足高地应力区地下硐室围岩质量评价具有一定参考意义。  相似文献   

16.
 为系统研究连续介质条件下隧道围岩的破坏模式和规律,采用模型试验,针对黏性材料和砂性材料2种典型地质材料进行研究。黏性材料由重晶石、石英砂和凡士林按一定配比组成,砂性材料考虑单一石英砂材料和石英砂与重晶石混合2种形式。利用压力盒、位移计、非接触监测系统等监测隧道开挖、加载过程中围岩应力和变形情况。对黏性材料而言,在逐级加载过程中表现出先洞室两侧剪切滑移,后拱顶塌落的二次破坏模式,通过位移和应力的监测可知,随着外部荷载的增大,洞室上方塑性区范围增加,而进入塑性状态后,围岩变形速率加快。对砂性材料而言,单一石英砂材料在开挖后围岩不具有自稳能力;而采用石英砂和重晶石混合后的材料,由于颗粒级配较好,材料具有一定的自锁能力,洞室开挖后可以保持稳定,随着逐级加载,洞室顶部首先出现二次抛物线型塌落拱,然后拱脚位置向洞室两侧移动,当其发展到水平中轴线处达到稳定,此时塌落拱滑裂面与普氏拱理论类似。模型试验揭示连续介质条件下隧道围岩的破坏模式,对隧道支护参数的确定具有重要意义。  相似文献   

17.
猴子岩水电站地下厂房洞室群具有高地应力、低强度应力比的特点,在施工过程中出现严重的变形破坏现象。结合地质、监测、检测及施工资料对施工期围岩的变形与破坏特征进行分析,分析结果表明:主厂房、主变室及尾调室围岩位移大于50 mm的测点分别占17.2%,27.3%和9.4%,三大洞室围岩变形处于较大水平,远超其他电站同期水平。最大位移出现在III 1类围岩处,表明高地应力条件下,较完整硬岩产生的卸荷回弹变形较大,岩石本身破坏产生的变形所占比重增加。围岩变形深度为5~15 m,最大可达23 m,相对较大;围岩变形与开挖卸荷关系密切,呈“阶跃式”发展。围岩变形破坏以应力重分布起主导作用的应力驱动型为主,由结构面不利组合控制的重力驱动型不再占主导地位。研究猴子岩地下厂房洞室群围岩变形破坏机制对其施工及运营安全具有重要的工程意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号