首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Biodiesel is a renewable fuel that can be produced from vegetable oils, animal fats, and used cooking oil including triglycerides. Biodiesel, an alternative biodegradable diesel fuel, is derived from triglycerides by transesterification with methanol and ethanol. Concerns about the depletion of diesel fuel reserves and the pollution caused by continuously increasing energy demands make biodiesel an attractive alternative motor fuel for compression ignition engines. There are four different ways of modifying vegetable oils and fats to use them as diesel fuel, such as pyrolysis (thermal cracking), dilution with hydrocarbons (blending), emulsification and transesterification. The most commonly used process is transesterification of vegetable oils and animal fats. The transesterification reaction is affected by molar ratio of glycerides to alcohol, catalysts, reaction temperature, reaction time and free fatty acids and water content of oils or fats. In the transesterification, free fatty acids and water always produce negative effects, since the presence of free fatty acids and water causes soap formation, consumes catalyst and reduces catalyst effectiveness, all of which result in a low conversion. Biodiesel has over double the price of diesel. The high price of biodiesel is in large part due to the high price of the feedstock.  相似文献   

2.
Renewable fuels produced from vegetable oils are an attractive alternative to fossil-based fuel. Different type of fuels can be derived from these triglycerides. One of them is biodiesel which is a mono alkyl ester of the vegetable oil. The biodiesel is produced by transesterification of the oil with an alcohol in the presence of a catalyst. Another kind of fuel (which is similar to petroleum-derived diesel) can be produced from the vegetable oil using hydroprocessing technique. This method uses elevated temperature and pressure along with a catalyst to produce a fuel termed as ‘renewable diesel’. The fuel produced has properties that are beneficial for the engine as well as the environment. It has high cetane number, low density, excellent cold flow properties and same materials can be used as are used for engine running on petrodiesel. It can effectively reduce NOx, PM, HC, CO emissions and unregulated emissions as well as greenhouse gases as compared to diesel. The fuel is also beneficial for the after-treatment systems. Trials in the field have shown that the volumetric fuel consumption of renewable diesel is higher than petrodiesel and nearly proportional to the volumetric heating value. The present review focuses on the hydroprocessing technique used for the renewable diesel production and the effect of different parameters such as catalyst, reaction temperature, hydrogen pressure, liquid hourly space velocity (LHSV) and H2/oil ratio on oil conversion, diesel selectivity, and isomerization. The review also summarizes the effect; renewable diesel has on combustion, performance, and emission characteristics of a compression ignition engine.  相似文献   

3.
The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel engine combustion process and pollutant formation. Biodiesel is known as the mono-alkyl-esters of long chain fatty acids derived from renewable feedstocks, such as, vegetable oils or animal fats, for use in compression ignition engines. Different parameters for the optimization of biodiesel production were investigated in the first phase of this study, while in the next phase of the study performance test of a diesel engine with neat diesel fuel and biodiesel mixtures were carried out. Biodiesel was made by the well known transesterification process. Cottonseed oil (CSO) was selected for biodiesel production. Cottonseed is non-edible oil, thus food versus fuel conflict will not arise if this is used for biodiesel production. The transesterification results showed that with the variation of catalyst, methanol or ethanol, variation of biodiesel production was realized. However, the optimum conditions for biodiesel production are suggested in this paper. A maximum of 77% biodiesel was produced with 20% methanol in presence of 0.5% sodium hydroxide. The engine experimental results showed that exhaust emissions including carbon monoxide (CO) particulate matter (PM) and smoke emissions were reduced for all biodiesel mixtures. However, a slight increase in oxides of nitrogen (NOx) emission was experienced for biodiesel mixtures.  相似文献   

4.
Abstract

The purpose of this work is to investigate biodiesel production processes from vegetable oils. Biodiesel fuel can be made from new or used vegetable oils and animal fats, which are non-toxic, biodegradable, renewable resources. The vegetable oil fuels were not acceptable because they were more expensive than petroleum fuels. Biodiesel has become more attractive recently because of its environmental benefits. With recent increases in petroleum prices and uncertainties concerning petroleum availability, there is renewed interest in vegetable oil fuels for diesel engines. Dilution of oils with solvents and microemulsions of vegetable oils lowers the viscosity, and some engine performance problems still exist. The purpose of the transesterification process is to lower the viscosity of the oil. Pyrolysis produces more biogasoline than biodiesel fuel.  相似文献   

5.
Biodiesel, defined as mono-alkyl esters of long-chain fatty acids derived from vegetable oils or animal fats, is an attractive renewable fuel alternative to conventional petroleum diesel fuel. Biodiesel produced from oils such as cottonseed oil and poultry fats suffer from extremely poor cold flow properties because of their high saturated fatty acid content. In the current study, Ethyl Levulinate (ethyl 4-oxopentanoate) was investigated as a novel, bio-based cold flow improver for use in biodiesel fuels. The cloud (CP), pour (PP), and cold filter plugging points (CFPP) of biodiesel fuels prepared from cottonseed oil and poultry fat were improved upon addition of ethyl levulinate at 2.5, 5.0, 10.0, and 20.0% (vol). Reductions of 4-5 °C in CP, 3-4 °C in PP and 3 °C in CFPP were observed at 20 vol % ethyl levulinate. The influence of ethyl levulinate on acid value, induction period, kinematic viscosity and flash point was determined. The kinematic viscosities and flash points decreased with increasing content of ethyl levulinate. All samples (≤15 vol % ethyl levulinate) satisfied the ASTM D6751 limit with respect to flash point, but none of the 20 vol % blends were acceptable when compared to the higher EN 14214 specification. Acid value and oxidative stability were essentially unchanged upon addition of ethyl levulinate. In summary, ethyl levulinate appears acceptable as a diluent for biodiesel fuels with high saturated fatty acid content.  相似文献   

6.
The petroleum fuels play a major role in industry, agriculture, and transport besides meeting out many other basic human needs. However, fossil fuels are limited in quantity and are depleting day by day as the consumption is increasing very rapidly. Biodiesel is one such fuel in which there is a lot of hope. In the recent past, biodiesel received considerable attention as a renewable fuel. In India, it has not been possible to produce biodiesel from edible oils since the same is very scarce. Hence, the scope of opting to non-edible oils from plants as raw material for biodiesel production recently gained momentum. This paper presents the production of biodiesel from nonedible, Neochloris oleoabundans oil and its characterization. The studies were carried out on transesterification of oil with methanol, sodium hydroxide, and Sodium methoxide as catalyst for the production of biodiesel. The process parameters such as catalyst concentration, reaction time, and reaction temperature were optimized for the production of Neochloris oleoabundans oil biodiesel. The biodiesel yield of 95.15% was noticed at optimal process parameters.  相似文献   

7.
The purpose of this work is to investigate fuel characteristics of biodiesel and its production in European Union. Biodiesel fuel can be made from new or used vegetable oils and animal fats, which are non-toxic, biodegradable, renewable resources. The vegetable oil fuels were not acceptable because they were more expensive than petroleum fuels. Biodiesel has become more attractive recently because of its environmental benefits. With recent increases in petroleum prices and uncertainties concerning petroleum availability, there is renewed interest in vegetable oil fuels for diesel engines. In Europe the most important biofuel is biodiesel. In the European Union biodiesel is the by far biggest biofuel and represents 82% of the biofuel production. Biodiesel production for 2003 in EU-25 was 1,504,000 tons.  相似文献   

8.
Biofuels are renewable solutions to replace the ever dwindling energy reserves and environmentally pollutant fossil liquid fuels when they are produced from low cost sustainable feedstocks. Biodiesel is mainly produced from vegetable oils or animal fats by the method of transesterification reaction using catalysts. Homogeneous catalysts are conventionally used for biodiesel production. Unfortunately, homogeneous catalysts are associated with problems which might increase the cost of production due to separation steps and emission of waste water. Inorganic heterogeneous catalysts are potentially low cost and can solve many of the problems encountered in homogeneous catalysts. Many solid acid and base inorganic catalysts have been studied for the transesterification of various vegetables oils. The work of many researchers on the development of active, tolerant to water and free fatty acids (FFA), as well as stable inorganic catalysts for biodiesel production from vegetable oils are reviewed and discussed.  相似文献   

9.
This paper reviews the production and characterization of biodiesel (BD or B) as well as the experimental work carried out by many researchers in this field. BD fuel is a renewable substitute fuel for petroleum diesel or petrodiesel (PD) fuel made from vegetable or animal fats. BD fuel can be used in any mixture with PD fuel as it has very similar characteristics but it has lower exhaust emissions. BD fuel has better properties than that of PD fuel such as renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. There are more than 350 oil bearing crops identified, among which only sunflower, safflower, soybean, cottonseed, rapeseed and peanut oils are considered as potential alternative fuels for diesel engines. The major problem associated with the use of pure vegetable oils as fuels, for Diesel engines are caused by high fuel viscosity in compression ignition. Dilution, micro-emulsification, pyrolysis and transesterification are the four techniques applied to solve the problems encountered with the high fuel viscosity. Dilution of oils with solvents and microemulsions of vegetable oils lowers the viscosity, some engine performance problems still exist. The viscosity values of vegetable oils vary between 27.2 and 53.6 mm2/s whereas those of vegetable oil methyl esters between 3.59 and 4.63 mm2/s. The viscosity values of vegetable oil methyl esters highly decreases after transesterification process. Compared to no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. An increase in density from 860 to 885 kg/m3 for vegetable oil methyl esters or biodiesels increases the viscosity from 3.59 to 4.63 mm2/s and the increases are highly regular. The purpose of the transesterification process is to lower the viscosity of the oil. The transesterfication of triglycerides by methanol, ethanol, propanol and butanol, has proved to be the most promising process. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The most important variables affecting the methyl ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification.  相似文献   

10.
Review of biodiesel composition, properties, and specifications   总被引:4,自引:0,他引:4  
Biodiesel is a renewable transportation fuel consisting of fatty acid methyl esters (FAME), generally produced by transesterification of vegetable oils and animal fats. In this review, the fatty acid (FA) profiles of 12 common biodiesel feedstocks were summarized. Considerable compositional variability exists across the range of feedstocks. For example, coconut, palm and tallow contain high amounts of saturated FA; while corn, rapeseed, safflower, soy, and sunflower are dominated by unsaturated FA. Much less information is available regarding the FA profiles of algal lipids that could serve as biodiesel feedstocks. However, some algal species contain considerably higher levels of poly-unsaturated FA than is typically found in vegetable oils.Differences in chemical and physical properties among biodiesel fuels can be explained largely by the fuels’ FA profiles. Two features that are especially influential are the size distribution and the degree of unsaturation within the FA structures. For the 12 biodiesel types reviewed here, it was shown that several fuel properties - including viscosity, specific gravity, cetane number, iodine value, and low temperature performance metrics - are highly correlated with the average unsaturation of the FAME profiles. Due to opposing effects of certain FAME structural features, it is not possible to define a single composition that is optimum with respect to all important fuel properties. However, to ensure satisfactory in-use performance with respect to low temperature operability and oxidative stability, biodiesel should contain relatively low concentrations of both long-chain saturated FAME and poly-unsaturated FAME.  相似文献   

11.
The increased demand for energy, climate change, and energy security concerns has driven the research interest for the development of alternative fuel from plant origin. Biodiesel derived from plant oils, which include edible and non-edible oil have gained interest for the last two decades as alternative for diesel around the world. Among these plant origin oils more than 95% of biodiesel production feedstocks come from edible oils, because they are readily available in many regions. The major advantage of these feedstocks is the properties of biodiesel produced from them are suitable to be used as diesel fuel substitute. But the consequence is the increase demand of the feedstock for food as well as fuel. A sustainable alternative fuel should be derived from renewable non-food biomass sources. The main objective of this review is to give an overview on the synthesis of biodiesel through esterification and transesterification using non-edible oil resources which are available in India, and available processes for synthesis of biodiesel (acid-, base-catalyzed transesterification reactions (homogeneous and heterogeneous), their importance, and which is the commercial process also discussed here.  相似文献   

12.
Biodiesel is renewable and environmental friendly, with calori?c value equivalent to regular fossil fuel. This fuel can be produced from a variety of feedstocks, such as ?rst-generation biodiesel feedstock (corn, peanut, soybean), second generation (jatropha, animal fats, waste cooking oils, macroalgae), and third generation (microalgae). Among these feedstocks, biodiesel production from microalgae has drawn special attention for different reasons: they have high lipid content and high growth rates; they are tolerant to severe environmental conditions; they offer the possibility of sequester carbon dioxide from the ?ue gases; their harvesting and transportation are economical compared to other crops; and they have very high photosynthetic yields compared to other terrestrial plants. The advantage of using macroalgae recollected on the beaches as raw material is that allows to obtained energy from a residue.

Microwave-assisted extraction and transesteri?cation of microalgae is being researched as a solution for biodiesel production by its benefits, such as shorter reaction times and less amount of heat energy to obtain biodiesel. It is due to the fact that microwaves can easily penetrate through the cell wall structure to extract and transesterify the oils into biodiesel.

The aim of this research was to explore the possibility of carrying out the microwave-assisted transesterification of three marine macroalgae (brown and green). Different experimental runs were carried out with different process parameters such as macroalgae-to-methanol ratio, reaction time and catalyst concentrations. Based on the obtained results, the best conditions for microwave-assisted transesteri?cation reaction were macroalgae-to-methanol ratio of 1:15 (wt/vol), sodium hydroxide concentration of 2 wt% and reaction time of 3 min.  相似文献   

13.
Biodiesel is a renewable and environmentally friendly alternative fuel that can be used in Diesel engines with little or no modification. Low cost feedstocks, such as waste oils, used cooking oil and animal fats, are important for low cost biodiesel production. The objective of this study was to investigate the engine performance and the road performance of biodiesel fuel originated from used cooking oil in a Renault Mégane automobile and four stroke, four cylinder, F9Q732 code and 75 kW Renault Mégane Diesel engine in winter conditions for 7500 km road tests in urban and long distance traffic. The results were compared to those of No. 2 Diesel fuel. The results indicated that the torque and brake power output obtained during the used cooking oil originated biodiesel application were 3–5% less then those of No. 2 Diesel fuel. The engine exhaust gas temperature at each engine speed of biodiesel was less than that of No. 2 Diesel fuel. The injection pressures of both fuels were similar. Higher values of exhaust pressures were found for No. 2 Diesel fuel at each engine speed. As a result of the No. 2 Diesel fuel application, the engine injectors were normally carbonized. After the first period, as a result of winter conditions and insufficient combustion, carbonization of the injectors was observed with biodiesel usage. As a result of the second period, since the viscosity of the biodiesel was decreased, the injectors were observed to be cleaner. Also, no carbonization was observed on the surface of the cylinders and piston heads. The catalytic converter was plugged because of the viscosity in the first period. At the second period, no problem was observed with the catalytic converter.  相似文献   

14.
According to the current consumption of world fossil‐based oil, coal and natural gas used to produce energy, worldwide reserves of these fuels will be depleted in less than 10 decades. Therefore, new renewable energy sources have to be developed to overcome this problem. Biodiesel is one of these new sources; it is composed of methyl or ethyl esters produced from vegetable oil or animal fats and possesses fuel properties similar to diesel fuel. This paper presents a study of factors affecting biodiesel production using cement kiln dust (CKD), as heterogeneous catalyst, and determination of the optimum reaction conditions. This was achieved by using the factorial design and response surface methodology in conjunction with steepest ascent method in the range of this study. The optimum conditions were found to be: A reaction time of about 6 h, catalyst loading of 2% of oil mass and methanol to oil molar ratio of 15:1. Fixed mixing speed of 800 rpm and constant temperature of 65 °C were used in all experiments. After performing the optimization process, CKD leachability was studied in order to determine its stability and reusability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Methyl and ethyl esters as biodiesel fuels were prepared from linseed oil with transesterification reaction in non-catalytic supercritical fluids conditions. Biodiesel fuel is a renewable substitute fuel for petroleum diesel fuel made from vegetable or animal fats. Biodiesel fuel has better properties than that of petroleum diesel fuel such as renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. The purpose of the transesterification process is to lower the viscosity of the oil. The viscosity values of linseed oil methyl and ethyl esters highly decreases after transesterification process. The viscosity values of vegetable oils vary between 27.2 and 53.6 mm2 s?1, whereas those of vegetable oil methyl esters between 3.59 and 4.63 mm2 s?1. Compared with no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. The transesterification of linseed oil in supercritical fluids such as methanol and ethanol has proved to be the most promising process. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The most important variables affecting the methyl ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification.  相似文献   

16.
Biofuel (e.g. biodiesel) has attracted increasing attention worldwide as blending component or direct replacement for fossil fuel in fuel energized engines. The substitution of petroleum-based diesel with biodiesel has already attained commercial value in many of the developed countries around the world. However, the use of biodiesel has not expanded in developing countries mostly due to the high production cost which is associated with the expensive high-quality virgin oil feedstocks. This research focuses on producing of biodiesel from low cost feedstocks such as used cooking oil (UCO) and animal fat (AF) via alkaline catalyzed transesterification process investigating the effects of process parameters, for example (i) molar ratio of feedstock to methanol (ii) catalyst concentration (iii) reaction temperature and (iv) reaction period on the biodiesel yield. The biodiesel was successfully produced via transesterification process from low cost feedstocks. It was also observed that the process parameters directly influenced the biodiesel yield. The optimum parameters for maximum biodiesel yields were found to be methanol/oil molar ratio of 6:1, catalyst concentration of 1.25 wt% of oil, reaction temperature of 65 °C, reaction period of 2 h and stirring speed of 150 rpm. The maximum biodiesel yields at the optimum conditions were 87.4%, 89% and 88.3% for beef fat, chicken fat and UCO, respectively. The results demonstrate high potential of producing economically viable biodiesel from low cost feedstocks with proper optimization of the process parameters.  相似文献   

17.
High energy prices, energy and environment security, concerns about petroleum supplies are drawing considerable attention to find a renewable biofuels. Biodiesel, a mixture of fatty acid methyl esters (FAMEs) derived from animal fats or vegetable oils, is rapidly moving towards the mainstream as an alternative source of energy. However, biodiesel derived from conventional petrol or from oilseeds or animal fat cannot meet realistic need, and can only be used for a small fraction of existing demand for transport fuels. In addition, expensive large acreages for sufficient production of oilseed crops or cost to feed animals are needed for raw oil production. Therefore, oleaginous microorganisms are available for substituting conventional oil in biodiesel production. Most of the oleaginous microorganisms like microalgae, bacillus, fungi and yeast are all available for biodiesel production. Regulation mechanism of oil accumulation in microorganism and approach of making microbial diesel economically competitive with petrodiesel are discussed in this review.  相似文献   

18.
In view of the fast depletion of fossil fuel, the search for alternative fuels has become inevitable, looking at huge demand of diesel for transportation sector, captive power generation and agricultural sector, the biodiesel is being viewed a substitute of diesel. The vegetable oils, fats, grease are the source of feedstocks for the production of biodiesel. Significant work has been reported on the kinetics of transesterification of edible vegetable oils but little work is reported on non-edible oils. Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstocks for biodiesel production in India and limited work is reported on the kinetics of transesterification of high FFA containing oil. The present study reports a review of kinetics of biodiesel production. The paper also reveals the results of kinetics study of two-step acid–base catalyzed transesterification process carried out at pre-determined optimum temperature of 65 and 50 °C for esterification and transesterification process, respectively, under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H2SO4 and NaOH and 400 rpm of stirring. The yield of methyl ester (ME) has been used to study the effect of different parameters. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. This is the first study of its kind dealing with simplified kinetics of two-step acid–base catalyzed transesterification process carried at optimum temperature of both the steps which took about 6 h for complete conversion of TG to ME.  相似文献   

19.
Especially by using a renewable source of fuels such as biodiesel, a large number of high-quality researches have been performed on the reduction of pollution released from fossil fuels. Transesterification process is a common way for the production of biodiesel from vegetable oil, animal fat, and algae oil in the presence of alcohol and catalyst. Viscosity is one of the important physical fuel properties used in the selection of biodiesel. Experimental measurement of viscosity is a time-consuming task. Hence, in this contribution, applicability and performance of two artificial neural network-based models named least square support vector machine (LSSVM) and genetic algorithm-radial basis function (GA-RBF) for the prediction of kinematic viscosity of biodiesel were investigated. Root-mean-square error, coefficient of determination (R2), and average absolute relative deviation of each modeling were reported for each LSSVM and GA-RBF models. Modeling results show that the proposed LSSVM model is more accurate and robust than GA-RBF model.  相似文献   

20.
The scarcity of fossil fuels, in addition to environmental damage due to fossil fuel use and exploration, promotes research into alternative energy sources such as biofuels. Biodiesel has attracted considerable attention in recent years as an alternative to fossil fuels, since it is renewable, biodegradable and non-toxic. Biodiesel can be obtained from animal fat, vegetable oils including cooking oil. In this work, a method of producing biodiesel from seed cake waste from the edible Jatropha curcas L. plant was developed. Oil extraction using hexane gave the best oil quality. Transesterifications of approximately 95% were obtained by alkali or acid catalysis, and the obtained biodiesel products were successfully corroborated with NMR techniques. Since J. curcas is a non-toxic plant, the remaining de-oiled cake was tested for its nutritional properties. Nutritional analysis showed a content of 43% and 33% of protein and carbohydrate, respectively; suggesting that this waste can be used as an attractive protein and carbohydrate source for fermentation processes and/or for formulations for animal feeding. In conclusion, this work provides evidence that the oil from an edible and non-toxic species of J. curcas is an attractive option for biodiesel production with nutritional applications and negligible wasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号