首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main‐stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18‐km reach downstream of the dam affected route‐specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub‐surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route‐specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low‐survival or high‐survival passage routes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Previous studies of Pacific salmonid passage over Snake River dams indicated slowed passage at transition pools, the transition area between the fishway entrance and the fish ladder. In 2001 and 2002, we conducted an experiment to determine if modified weirs affected adult salmon and steelhead passage times and route selection through the Lower Granite Dam transition pool. Fish attraction flows through the lower ladder weirs were experimentally increased using removable panels. During the experiment we monitored radio‐tagged adult Chinook salmon and steelhead to determine passage routes and times through the transition pool. The weir treatment increased the number of spring–summer Chinook salmon passing straight through the transition pool compared to those exiting the transition pool to the collection channel or tailrace. Mean passage times through the transition pool differed among routes and were significantly lower during treatment periods for the exit‐to‐collection channel route in spring‐summer Chinook salmon, but not for other routes. Passage times among routes differed in steelhead, but there was no evidence of treatment effects on route use or passage time. Fall Chinook exhibited similar trends in route use and passage time to spring–summer Chinook, but differences were not significant, perhaps because of relatively small sample size. Total dam passage times did not differ by treatment or route for any run. Fish depth during passage of the transition pool suggested that most fish passed through submerged orifices and supported the hypothesis that increased water velocity through these orifices caused the increase in straight‐through passage in spring–summer Chinook. Collectively, the results suggested the weir modifications provided improvement to passage through the transition pool for spring–summer Chinook and no evidence of negative effects on other runs. The results from this study were used to develop new design criteria and modifications of the Lower Granite Dam fishway. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The downstream transport of sediments and organics and upstream migration of anadromous fishes are key ecological processes in unregulated riverine ecosystems of the North Pacific coast, but their influence on wildlife habitats and populations is poorly documented. Removal of two large hydroelectric dams in Washington's Elwha Valley provides an unprecedented opportunity to study long‐term responses of wildlife populations to dam removal and restoration of these key ecological processes. We compared pre‐dam removal patterns in the relative abundance and occupancy of mesocarnivores, small mammals and lentic amphibians of the Elwha River riparian zone above, between and below the dams. Occupancy of riparian habitats by three mesocarnivore species diminished upriver but did not appear to be closely linked with the absence of salmon in the upper river. Although the importance of salmon in the lower river cannot be discounted, other gradients in food resources also likely contributed to observed distribution patterns of mesocarnivores. Abundance and occupancy patterns within congeneric pairs of new world mice (Peromyscus spp.) and shrews (Sorex spp.) indicated that closely related species were negatively associated with each other and responded to habitat gradients in the riparian zone. The availability of lentic habitats of amphibians was highly variable, and occupancy was low as a result of rapidly changing flows during the larval development period. We speculate that long‐term changes in habitat conditions and salmon availability following dam removal will elicit long‐term changes in distribution of mesocarnivores, small mammals and amphibians. Long‐term monitoring will enhance understanding of the role of fish and restored ecosystem processes on wildlife communities along salmon‐bearing rivers in the region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This study was undertaken as part of a long‐term investigation of the ability of high‐level fishways to rehabilitate fish communities upstream of high dams. Effects of Tallowa Dam on fish of the Shoalhaven River system were studied by comparing species abundances, population size‐structures and the structure of fish communities above and below the dam. Fish were sampled twice yearly for two years at 12 sites throughout the catchment. Species richness was greater downstream of the dam, with 21 species, compared to 16 species upstream of the dam. Ten diadromous species are believed to be extinct above the dam because of obstructed fish passage. Another four migratory species capable of climbing the wall have reduced abundances upstream. Accumulations of fish, particularly juveniles, directly below the dam were evident for nine species. Fish communities upstream and downstream of the dam differed significantly, identifying the dam as a significant discontinuity in the available fish habitats within the system. Historical evidence suggests that before the dam was built, fish communities from the tidal limit to at least 130 m elevation were largely continuous. This study has demonstrated that Tallowa Dam is a major barrier to fish migration and has had adverse effects on the biodiversity of the system. The creation of Lake Yarrunga by Tallowa Dam has resulted in distinctive fish communities in riverine and lacustrine habitats. Populations of five species that occur both upstream and downstream of the dam have developed differences in their size structures. The fish community downstream of the dam also differs from its historical condition because of the virtual disappearance of Australian grayling (Prototroctes maraena) and the establishment of non‐native species. A high‐level fishway is now being designed for the dam to restore fish passage. Data from this study will serve as a baseline against which to assess the effectiveness of the fishway in rehabilitating fish communities of the river system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
In the Snake River basin of the Pacific northwestern United States, hydroelectric dam operations are often based on the predicted emergence timing of salmon fry from the riverbed. The spatial variability and complexity of surface water and riverbed temperature gradients results in emergence timing predictions that are likely to have large errors. The objectives of this study were to quantify the thermal heterogeneity between the river and riverbed in fall Chinook salmon spawning areas and to determine the effects of thermal heterogeneity on fall Chinook salmon emergence timing. This study quantified river and riverbed temperatures at 15 fall Chinook salmon spawning sites distributed in two reaches throughout 160 km of the Snake River in Hells Canyon, Idaho, USA, during 3 different water years. Temperatures were measured during the fall Chinook salmon incubation period with self‐contained data loggers placed in the river and at three different depths below the riverbed surface. At all sites, temperature increased with depth into the riverbed, including significant differences (p < 0.05) in mean hourly water temperature of up to 3.8°C between the river and the riverbed among all the sites. During each of the 3 water years studied, river and riverbed temperatures varied significantly among all the study sites, among the study sites within each reach and between sites located in the two reaches. Considerable variability in riverbed temperatures among the sites resulted in fall Chinook salmon emergence timing estimates that varied by as much as 36 days within a reach, depending on the source of temperature data used for the estimate. Monitoring of riverbed temperature gradients at a range of spatial scales throughout the Snake River would provide better information for managing hydroelectric dam operations, and would aid in the design and interpretation of future empirical research into the ecological significance of physical riverine processes. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

6.
Effective dam management requires an understanding of the ecological impact of a facility and its operations on individual fish and fish populations. Traversing high flows downstream of dams is an energetically challenging activity that could influence survival and spawning success following passage. Carryover effects, however, are an underappreciated consequence of dam passage that have been overlooked by researchers and natural resource managers. We conducted a large‐scale management experiment to determine if the operation of dam attraction flows could be changed to reduce high sockeye salmon Oncorhynchus nerka mortality following passage and increase spawning success. We tested two flow conditions: (i) a baseline condition—currently used by managers—that released high attraction flows directly adjacent to the entrance to a vertical‐slot fishway and (ii) an alternative condition that released attraction flows 10 m away from the fishway entrance to reduce the flows fish swim through while approaching the passage structure. We tagged 637 sockeye salmon with telemetry tags to monitor dam passage, post‐passage survival to spawning grounds and spawning success under the two flow conditions. Validated fish counters at the exit of the fishway and on spawning grounds were used to generate population level estimates of survival to spawning grounds. Individuals exposed to baseline flow conditions spent two times longer recovering from dam passage and exhibited 10% higher mortality following passage than those exposed to alternative flows. Release of alternative flows for 10 days assisted approximately 550 fish (or 3% of total spawners) in reaching spawning grounds. Once on spawning grounds, female spawning success was strongly influenced by individual spawning characteristics (longevity and date of arrival on spawning grounds) and not dam flow condition. Our findings highlight a cost‐effective solution that decreases mortality following passage simply by altering the location of dam flow releases and not reductions in discharge. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The evolutionary effects of harvest on wild fish populations have been documented around the world; however, sublethal selective pressures can also cause evolutionary changes in phenotypes. For migratory fishes, passage facilities may represent instances of nonlethal selective pressure. Our analysis of 6 years of passage data suggests that certain fish passage facilities on the Penobscot River have been exerting selective pressure against large‐bodied, anadromous Atlantic salmon (Salmo salar). At the second and third dams in the river, a 91‐cm salmon was 21%–27% and 12%–16% less likely to pass than a 45‐cm salmon, respectively. Fish size positively influences egg survival and number and is a heritable trait. Therefore, in a wild‐reproducing population, exclusion of large fish from spawning areas may have population‐level impacts. In the Penobscot River, most returning adults derive from a hatchery program that collects its broodstock after passing the first dam in the river. Analysis of fork lengths of salmon returning to the Penobscot River from 1978 to 2012 provided mixed support for evolution of size at maturity in different age classes in a pattern that may be expected from interactions with conservation hatchery operations. Additionally, slow‐maturing and iteroparous individuals that represent the largest salmon size classes were essentially lost from the population during that time, and Penobscot River fish have shorter fork lengths at maturity than Atlantic salmon in undammed systems.  相似文献   

8.
Dams are a conservation threat because they function as barriers to native fish movement; however, they may prevent the spread of invasive species. Invasive bigheaded carps (Hypophthalmichthys spp.) threaten the Great Lakes ecosystem and are advancing towards Lake Michigan via the Illinois River. Navigation dams on the Illinois River may deter bigheaded carps' upstream movement. We investigated the permeability of the Starved Rock Lock and Dam (SRLD), the most downstream gated Illinois River dam, to bigheaded carps' migration by examining the timing of individuals approaching and passing through SRLD in relation to gate openness, tailwater elevation, and water temperature. Using acoustic telemetry of (N = ~104 per year) tagged fish, 13 upstream passages of bigheaded carps occurred through SRLD between 2013 and 2016. Eleven passages occurred through the dam gates and 2 through the lock chamber, indicating deterrents (e.g., CO2) placed in SRLD lock chamber may only limit passage of a small proportion of all fish passing through the lock‐and‐dam structure. Passages were documented only in 2013 and 2015. Most of the dam gate passages occurred during high water when gates were completely out of the water. Timing of bigheaded carps approaching SRLD was positively correlated with rising water temperature and high tailwater elevation, and all fish approached during late March through mid‐September. Movement through dams is rare; modifying gate operations to reduce gate openness during late spring and summer could further reduce the permeability of gated dams such as SRLD to bigheaded carps, slowing their upstream advance.  相似文献   

9.
We tracked 335 northern squawfish implanted with radio transmitters in the Columbia River in May–December 1993 and May–September 1994. Most fish were released near The Dalles and John Day dams, with the remaining fish released into reservoir areas away from dams. We used boats with mounted Yagi antennas, fixed site receiver stations near the dams and aerial surveys to track movements of tagged northern squawfish. Northern squawfish were commonly associated with water <5 m deep, water velocities <1 m/s and were <45 m from shore. The average movement from the release site was 19.5 km; fish released near dams remained closer to their release sites than fish released into reservoirs. Short-term movements (successive observations within 24 h) comprised 75% of all detected movements, represented fish moving short distances (mean=0.96 km) between dams and down-river areas and corresponded to increased passage of juvenile salmonids. Long-term movements (successive observations exceeding 24 h) were mainly attributed to fish released into the reservoirs moving up-river to a dam, and fish moving between the two dam tailrace areas. A strong up-river movement trend terminating at John Day Dam tailrace in June suggested that spawning occurred nearby. Reduced numbers of observations of fish in the autumn suggested that northern squawfish moved away from dam areas and into deeper water for the winter. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
Hydropower dams substantially modify lotic ecosystems. Most studies regarding their ecological impacts are based on large dams and provide little information about the far more abundant effects of small hydropower dams. Our aim was to characterize the ecological effects of a small hydropower dam and run‐of‐the‐river reservoir on the structure of benthic macroinvertebrate assemblages in the Pandeiros River located in the neotropical savanna of Brazil. We tested the hypothesis that benthic macroinvertebrate assemblages in sites directly affected by the dam and reservoir would show a different taxonomic structure compared with those in free‐flowing sites. We expected to find sensitive native species associated with the free‐flowing sites, whereas resistant and non‐native invasive taxa were expected in impounded sites. We also explored associations between the presence of native and non‐native invasive taxa to each habitat type. We found that the structure of benthic macroinvertebrate assemblages was significantly different between free‐flowing and impounded sites. Also, we found that the dam and reservoir facilitated colonization of non‐native invasive species (Corbicula fluminea and Melanoides tuberculata) because only in those sites they were found in high abundance, in contrast to the free‐flowing sites. Although the environmental conditions imposed by the impoundment altered the structure of benthic macroinvertebrate assemblages, the effects were limited to sites closest to the dam. Our results highlight the necessity of understanding physical habitat changes caused by the presence and management of run‐of‐the‐river dams and reservoirs.  相似文献   

11.
Adding variable renewable energy (solar, wind) in electricity portfolios will increase need for fast grid responses through hydropower peaking. Over 60 years of daily hydropeaking by four dams on the lower Snake River, United States of America provide an example of long-term environmental impacts. Downstream-migrating Chinook salmon (Oncorhynchus tshawytscha) subyearlings that normally transit the dammed river in summer slowed their migration into autumn with about one-third of those delayed overwintering in the reservoirs. Specific cause for stalled migration is controversial, with options including evolution of a new migratory strain and action of environment on individual migrants. Analysis of archived dam data shows evidence of reservoir seiches (standing waves of waterbody oscillations) caused by within-day hydropower peaking during the October–February period of stalled migration. Analyses of limnological literature identified typical water movements in seiches and analyses of biological literature identified typical effects on fish kinematics (shape, motion) of changing flows in a fish's immediate proximity. Process-focused inference predicts anomalous fish-migration behavior in seiche hydraulics, which matches fish-tracking data obtained by others in Lower Monumental Reservoir. Fish tracks include upstream swimming (‘downstream’ in reverse seiche flows) and periods of disoriented movements typical of responses to repeatedly changing flows. This multi-disciplinary, process-focused synthesis yields a testable hypothesis that seiche-flow hydraulics in the lower Snake River reservoirs from hydropower peaking contribute to known out-migration delay and overwintering of late-migrating fall Chinook salmon subyearlings. As hydropower peaking causes seiches in downstream reservoirs elsewhere in North America and Europe, migratory species elsewhere may be susceptible to similar migration delays with long-term population effects.  相似文献   

12.
In a restored, third‐order stream in northern Nova Scotia, Canada, we used redd counts over 12 years to examine the influence of beaver dams and the timing and intensity of autumn rains on spawning activity of Atlantic salmon. Most beaver dams in most years had no detectable effect on the distribution of spawning redds, but in 2004 the density of redds downstream from a three‐dam complex was significantly greater than that above, suggesting the dams were a barrier to many fish. A second complex of dams blocked salmon passage completely in 2003 and 2004 until they were notched to provide access upstream. The length of stream used by salmon for spawning was linearly correlated with total precipitation in the basin in October plus November (R2 = 0.60), to a ceiling of 325 mm, above which the fish had access to the entire brook, if beaver dams were notched. Number of redds in the whole brook was strongly correlated (R2 = 0.94) with the coefficient of variation (CV) of daily rainfall in October, but only for 7 of 11 years. This relationship disappeared when the impassable beaver dam complex failed in 2005, allowing salmon free access to 4 km of the upper brook. Variation in rainfall, and hence discharge, in this flashy brook evidently influences migration and spawning of Atlantic salmon in conjunction with channel blocking by beaver dams. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
To address daily fluctuations in electricity demands, the quantities of water passing through the turbines of hydropower plants can vary significantly (up to fourfold) during a 24‐h cycle. This study evaluates the effects of hourly variations in water discharges on the limnological conditions observed in two below‐dam river stretches. The study reservoirs, Capivara and Taquaruçu, are the 9th and 10th reservoirs in a cascade of dams in the Paranapanema River in south‐east Brazil. The reservoirs exhibit different trophic conditions, water retention times, thermal regimes and spillway positions. Capivara Reservoir is deeper, meso‐eutrophic, with a high water retention time and hypolimnetic discharges (32 m) varying between 500 and 1400 m3 s?1. In contrast, Taquaruçu Reservoir is relatively shallow, oligo‐mesotrophic, and has a low retention time, with water discharges varying between 500 and 2000 m3 s?1. Its turbine water intake zone also is more superficial (7 m). For two periods of the year, winter and summer, profiles of limnological measurements were developed in the lacustrine (above‐dam site) zones of the reservoirs, as well as in the downstream river stretches (below‐dam site). In both cases, the sampling was carried out at 4‐h intervals over a complete nictemeral cycle. The results demonstrated that the reservoir operating regime (water discharge variations) promoted significant differences in the conditions of the river below the dams, especially for water velocity, turbidity, and nutrient and suspended solids concentrations. The reservoir physical characteristics, including depth, thermal stratification and outlet structure, are also key factors influencing the limnology and water quality at the below‐dam sampling sites. In the case of Capivara Reservoir, for example, the low dissolved oxygen concentration (<5.0 mg L?1) in its bottom water layer was transferred to the downstream river stretches during the summer. These study results demonstrated that it is important to continue such investigations as a means of verifying whether or not these high‐amplitude/low‐frequency variations could negatively affect the downstream river biota.  相似文献   

14.
In the Tennessee River, USA, we examined lengthwise patterns in fish community structure and species richness within and among nine reservoirs organized in sequence and connected through navigational locks. Within reservoirs, the riverine, transition and lacustrine zones supported distinct, although overlapping, nearshore fish assemblages; differences were also reflected in measures of species richness. Spatial patterns were most apparent for rheophilic species, which increased in species richness and representation upstream within each reservoir and downstream across the chain of reservoirs. This pattern resembled a sawtooth wave, with the amplitude of the wave peaking in the riverine zone below each dam, and progressively higher wave amplitude developing downstream in the reservoir chain. The observed sawtooth pattern supports the serial discontinuity concept in that the continuity of the riverine fish community is interrupted by the lacustrine conditions created behind each dam. Upstream within each reservoir, and downstream in the chain of reservoirs, habitat characteristics become more riverine. To promote sustainability of rheophilic fishes and maintain biodiversity in impounded rivers, conservation plans could emphasize maintenance and preservation of riverine environments of the reservoir's upper reaches, while remaining cognizant of the broader basin trends that provide opportunities for a lengthwise array of conservation and management policy. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

15.
The building of adduction channels (penstocks) that conduct water from reservoirs to turbines, which are located kilometres from the dam, is becoming common, optimizing the electricity generation in small dams. This design creates a river stretch with reduced discharge between the dam and the powerhouse. This study evaluates the short‐term impacts of the below‐dam decrease in river flow on fish assemblages. Samples were collected in the reduced flow stretch of the Castro Alves Hydropower Plant (Antas River, Rio Grande do Sul, Brazil) before the reservoir started operating (January 2008; mean discharge of 103.7 m3/s) and immediately after operation began (March 2008; mean discharge of 12.4 m3/s). Sampling was conducted in distinct habitats of the reduced flow stretch (slow waters—gillnets, sand beaches—seining nets, structured littoral—electrofishing, and fast waters—cast nets) with a strongly standardized effort. The attributes of the fish assemblages were not negatively affected by the flow reduction in any habitat sampled. However, distinct changes in the spatial structure were observed considering the different types of habitat predominantly used by the species, which represents an entire reorganization of the fish assemblages in the short term. It is fundamental that these short‐term aspects be considered in the licensing of hydropower plants in addition to the long‐term changes.  相似文献   

16.
Glen Canyon Dam, located on the Colorado River in northern Arizona, has affected the physical, biological and cultural resources of the river downstream in Grand Canyon. One of the impacts to the downstream physical environment that has important implications for the aquatic ecosystem is the transformation of the thermal regime from highly variable seasonally to relatively constant year‐round, owing to hypolimnetic releases from the upstream reservoir, Lake Powell. Because of the perceived impacts on the downstream aquatic ecosystem and native fish communities, the Glen Canyon Dam Adaptive Management Program has considered modifications to flow releases and release temperatures designed to increase downstream temperatures. Here, we present a new model of monthly average water temperatures below Glen Canyon Dam designed for first‐order, relatively simple evaluation of various alternative dam operations. The model is based on a simplified heat‐exchange equation, and model parameters are estimated empirically. The model predicts monthly average temperatures at locations up to 421 km downstream from the dam with average absolute errors less than 0.5°C for the dataset considered. The modelling approach used here may also prove useful for other systems, particularly below large dams where release temperatures are substantially out of equilibrium with meteorological conditions. We also present some examples of how the model can be used to evaluate scenarios for the operation of Glen Canyon Dam. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

17.
During April–July 2000, we radio‐tagged and released juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) to evaluate a prototype surface flow bypass at Bonneville Dam on the Columbia River. The mock bypass, called a prototype surface collector (PSC), had six vertical slot entrances that were each 6 m wide and 12 m deep. The PSC was retrofitted to the upstream face of Bonneville Dam's First Powerhouse. Our objectives were to: (1) assess species‐specific differences in movement patterns and behaviour of fish within 6 m of the face of the PSC, (2) estimate the efficiency and effectiveness of the PSC and (3) evaluate factors affecting the performance of the PSC. We found that 60–72% of the fish, depending on species, detected within 6 m of the PSC entered it. Of the fish that passed the First Powerhouse at turbines 1–6, 79–83% entered the PSC. Diel period was a significant contributor to PSC performance for all species, and day of year was a significant contributor to PSC performance for subyearling Chinook salmon. The PSC was twice as effective (%fish/%flow) as the spillway, passing 2.5:1 steelhead and subyearling Chinook salmon and 2.4:1 yearling Chinook salmon per unit of water. If fully implemented, the PSC would increase the percentage of fish that pass the First Powerhouse through non‐turbine routes from 65–77% (without the PSC) to 76–85% (with the PSC), depending on species. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

18.
Studying fish behaviour at hydropower dams is needed to facilitate the design and improvement of fish passage solutions, but few studies have focused on Atlantic salmon kelts. Here, we used radio telemetry (n = 40, size range = 50–81 cm) and acoustic sonar to study kelt movements in the forebay as well as their dam passage survival and subsequent migration success past multiple dams. We also compare radio telemetry and acoustic sonar observations of fish behaviour and used acoustic sonar to measure the depth distribution of fish approaching the turbine intake zone. Passage success at the dam was 41%, and mortality was largely associated with turbine passage (62%). The two fish that passed via the spill gates survived and continued their downstream migration. At the dam, all but one radio‐tagged kelt approached the intake zone shortly after arrival to the forebay, and sonar data showed that approaching fish were predominantly surface oriented (72%, 88% and 96% of the observations were less than 1, 2 and 3 m deep, respectively). Turbine passage rate from the intake zone was higher at night than at day, indicating that the lack of visual cues may reduce the barrier effect of the 70‐mm conventional trash rack. Turbine passage rate also increased with increasing hydropower generation. The percentage of observed upstream movements away from the intake zone compared with the total number of observations was considerably greater in the radio telemetry data (41%) than in the sonar data (4%). Only one fish survived passage of all eight hydropower dams to reach the lake. This low‐passage survival underscores the need for remedial measures to increase the survival of migrating kelts, and the fish's surface orientation as well as their rapid approach to the intake rack should be taken into account when designing such measures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
The conservation of migratory fish species worldwide has been threatened by the loss of longitudinal connectivity caused by dams intercepting large rivers. One environmental management strategy for reestablishing connectivity is providing passage through fish ladders. However, ladders in Neotropical rivers have been described as ascending one‐way routes. We analysed the movements of Prochilodus lineatus through a fish ladder at a large dam—Porto Primavera—in the heavily impounded Upper Paraná River, Brazil, to determine whether the ladder connected habitats downstream and upstream of the dam, in both directions. A total of 1,419 specimens of P. lineatus were PIT‐tagged above and below the dam, and continuously monitored for 4 years. We documented bidirectional movements of P. lineatus through the fish ladder. Many individuals repeated these movements annually; one individual as many as six times. It was estimated that the cumulative probability that P. lineatus would return from downstream after descending through the ladder was 0.38, 0.50, and 0.56 in 1, 2, and 3 years, respectively. Correspondingly, return probabilities from upstream were 0.15, 0.22, and 0.26 in 1–3 years, respectively. Although return probabilities from upstream were roughly half, our results suggest the Porto Primavera fish ladder contributes to habitat connectivity, bidirectional passage, and preservation of P. lineatus. These results deviate from the perception that fishways are ineffective in Neotropical rivers. We suggest that fishways can restore the bidirectional connectivity denied to some Neotropical species, and until the services of dams are no longer needed, environmental management through fish ladders could continue to be considered as an integral part of broader conservation strategy designed to preserve native fauna.  相似文献   

20.
Adult sockeye salmon (Oncorhynchus nerka) were studied to assess the consequences of a dam and vertical‐slot fishway on mortality during their spawning migration in the Seton–Anderson watershed, British Columbia, Canada. Since previous research suggests fishway passage may be difficult, our main hypothesis was that the dam and fishway have post‐passage consequences that affect subsequent behaviour and survival. Eighty‐seven sockeye were caught at the top of the fishway, implanted with an acoustic telemetry transmitter, non‐lethally biopsied to obtain a small blood sample and released either upstream or downstream of the dam. Indices of physiological stress (i.e. plasma cortisol, glucose, lactate and ions) indicated that fish were not stressed or exhausted after capture from the fishway, and were not unduly stressed by transportation to release sites or net‐pen holding. Of 59 fish released downstream of the dam, 14% did not reach the dam tailrace. Overall passage efficiency at the fishway was 80%. Mortality in two lakes upstream of the dam was greater in fish released downstream of the dam (27%) compared to fish released upstream of the dam (7%; p = 0.04) suggesting that dam passage has consequences that reduce subsequent survival. Cumulative mortality of fish released downstream of the dam (n = 55) resulted in only 49% survival to spawning areas, compared to 93% of fish released upstream of the dam (n = 28). Survival was significantly lower for females (40%) than for males (71%; p = 0.03), a finding that has implications for conservation because spawning success of sockeye salmon populations is governed primarily by females. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号