首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Periodic flooding plays a key role in the ecology of floodplain rivers. Damming of such rivers can disturb flooding patterns and have a negative impact on commercial fish yield. The Volga River, the largest river in Europe, has a regulated flow regime after completion of a cascade of dams. Here, we study effects of damming on long‐term discharge variability and flood pulse characteristics. In addition, we evaluate the effects of the altered flood pulse on floodplain ecosystem functioning and commercial fish yields. Our results indicate that both flood pulse and fish populations of the Volga–Akhtuba floodplain have varied considerably over the past decades. After damming, annual maximum peak discharges have decreased, minimum discharges increased, but average discharges remained similar to pre‐damming conditions. Moreover, because of bed level incision of over 1.5 m, a higher discharge is needed to reach bankfull level and inundate the floodplains. Despite this significantly altered hydrological regime and subsequent morphological changes, current discharge management still provides significant spring flooding. However, commercial fish catches did decrease after damming, both in the main channel and in the floodplain lakes. All catches were dominated by species with a eurytopic flow preference, although catches from the main channel contained more rheophilic species, and floodplain catches contained more limnophilic and phytophilic species. The strong increase of opportunistic gibel carp (Carassius gibelio) around 1985 was apparent in the main channel and the floodplain lakes. Despite the hydrological changes, the decrease in overall catches, and the upsurge of gibel, we found a strong positive effect of flood magnitude in the previous year on commercial fish yield in the floodplain lakes. This suggests that under the current discharge management there still is an increased fish growth and/or survival during high floods and that functioning of the floodplain is at least partly intact. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Increasing multi‐sectoral demands on water resources have led to water abstraction and transfer activities, and the construction of dams and embankments that have significantly altered the flood regimes of rivers throughout the world resulting in the loss of fish production and biodiversity. The current emphasis on sustainable development and biodiversity conservation is leading efforts to mitigate these impacts by means of interventions such as the release of artificial floods downstream of dams and the manipulation of water levels within impounded floodplains. Whilst much work has been done to determine the hydrological requirements for the maintenance of salmonid populations, few equivalent studies are available from which to develop criteria for the management of hydrological regimes for fishes and fisheries in large floodplain–river systems such as the Mekong. The population dynamics of fish in such rivers are believed to respond to hydrological conditions in a density‐dependent manner. An age‐structured population dynamics model incorporating sub‐models describing density‐dependent growth, mortality and recruitment was used to explore how hydrological conditions within a theoretical floodplain–river system affect the dynamics of a common floodplain–river fish species. Graphical summaries of the response of exploitable biomass to a range of different drawdown rates, dry and flood season areas and volumes, and flood season durations are presented under five different model assumptions concerning density‐dependent processes. Optimal flooding patterns are also described for the model species and theoretical river system. The patterns of predictions that emerge from the simulations provide guidelines for managing or manipulating hydrological conditions in river systems for both fixed and variable volume hydrological scenarios. As a general rule of thumb, exploitable biomass is maximized by minimizing the rate of drawdown and maximizing the flood duration and flood and dry season areas or volumes. However, experiences from dam and other hydraulic engineering projects suggest that these predictions should be treated with caution until we better understand the influence of hydrology on spawning behaviour, system primary production, and critical habitat availability. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The river systems of the Rhine and Meuse include a large number of floodplain waters showing differences in hydrology and geomorphology. A classification of 100 water bodies based on their macroinvertebrate communities has been worked out as a tool for ecological management. Analyses were performed on structural (species composition) and functional (trophic relations) aspects of macrozoobenthos in relation to hydrological, vegetational, and physicochemical parameters. Based on the classification of macroinvertebrate communities, three major groups of water bodies can be distinguished, which are related to the frequency of inundation. The flood frequency constitutes the major environmental gradient which structures the zoobenthos communities in the Dutch floodplain waters. Faunal composition is mediated by substrate availability, water chemistry, and the availability of nutritional resources. This typology serves as a basis for the prediction of the impact of hydrology changes on the macrozoobenthic communities of floodplain waters of highly eutrophic and polluted rivers.  相似文献   

4.
Fish populations in the Brazos River, Texas, were surveyed monthly for 2 years to determine the relative influence of hydrology and habitat characteristics on the recruitment dynamics of seven species representing three divergent life history strategies. Surveys were conducted in two oxbow lakes with different flood recurrence intervals and the main river channel. The first year was relatively dry with few oxbow‐river connections, whereas year 2 was relatively wet and connections between the main channel and floodplain habitats were common. Oxbow lakes supported greater juvenile abundances of most species relative to the main channel and were particularly important for nest building species with parental care. The river channel supported small species with extended reproductive periods and large, long‐lived species that are able to store reproductive potential during sub‐optimal periods. Hydrologic isolation was associated with greater rotifer densities in oxbows, and species with the greatest fecundity produced strong year classes during this period. Hydrologic connectivity did not increase juvenile production for most species, suggesting that recruitment dynamics in the Brazos River are similar to predictions of the low flow recruitment hypothesis (LFR). These results suggest that both hydrology and habitat heterogeneity interact with fish life history strategy to determine optimal conditions for recruitment and all three factors must be considered in restoration strategies for floodplain rivers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
In large European rivers the chemical water quality has improved markedly in recent decades, yet the recovery of the fish fauna is not proceeding accordingly. Important causes are the loss of habitats in the main river channels and their floodplains, and the diminished hydrological connectivity between them. In this study we investigate how river regulation has affected fish community structure in floodplain waterbodies of the rivers Rhône (France), Danube (Austria), Rhine and Meuse (The Netherlands). A typology of natural and man‐made aquatic habitats was constructed based on geomorphology, inundation frequency and ecological connectivity, along the transversal river–floodplain gradient, i.e. perpendicular to the main stream of the river. Fish species were classified in ecological guilds based on their flow preference, reproduction ecology and diet, and their status on national red lists was used to analyse the present state of the guilds and habitats. Ecological fish guilds appear to be good indicators of ecological integrity and functioning of river–floodplain systems. A transversal successional gradient in fish community structure that bears some resemblance to the gradient found in natural rivers can still be discerned in heavily regulated rivers. It resembles the longitudinal river gradient; even some predictions of the River Continuum Concept are applicable. Overall, richness and diversity of species and ecological guilds decrease with decreasing hydrological connectivity of floodplain waterbodies. Anthropogenic disturbances have affected fish species unevenly: guilds of specialized species that are highly adapted to specifically riverine conditions have declined far more than generalist species. Fish habitats in the main and secondary channels have suffered most from regulation and contain the highest percentage of threatened species. Rheophilic fishes have become rare because their lotic reproductive habitats are severely degraded, fragmented, absent or unreachable. Limnophilic fishes have become rare too, mainly as a result of eutrophication. Eurytopic fishes have become dominant everywhere. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Anthropogenic alterations to large rivers ranging from impoundments to channelization and levees have caused many rivers to no longer access the floodplain in a meaningful capacity. Floodplain habitats are important to many riverine fishes to complete their life‐history strategies. The fish community and species of fish that inhabit floodplain habitats are often dictated by the type of habitat and the conditions within that habitat (e.g., temperature, water velocity, depth, and discharge). As mitigation and restoration projects are undertaken, it is imperative that managers understand how various habitat components will affect the fish community in floodplain habitats. We collected fish and habitat data from two restored side channels with different structural designs on the lower Platte River, Nebraska, to determine how habitat variables predicted species diversity and individual species presence. We found a decrease in discharge in the main‐stem river resulted in increased diversity in one of the side channels, with the greatest diversity values occurring during summer. No habitat variables performed well for predicting fish species diversity for an adjacent side channel with more uniform depth and velocity and no groundwater inputs. However, several native riverine fish species in this side channel were shown to be associated with high temperature, dissolved oxygen, main‐stem discharge, and discharge variability. These results highlight the importance of considering the physical design of restored floodplain habitats when attempting to enhance fish communities.  相似文献   

7.
The rehabilitation of lowland rivers subjected to channelization and artificial levee construction should attempt to improve habitat heterogeneity and diversity of floodplain hydrological connectivity. However, rehabilitation efforts rarely consider the importance of variable lateral hydrological connectivity between floodplain waterbodies and main river channels (ranging from those permanently connected to those temporarily connected during river level rises), instead focusing on increasing individual floodplain waterbody connectivity. This study investigated the young‐of‐the‐year (YoY) fish communities in 10 artificial floodplain waterbodies of variable hydrological connectivity with the river Trent, England, between May and November 2006, inclusive. Floodplain waterbody connectivity to the main river was positively correlated with the number of species captured (alpha diversity), Shannon–Wiener diversity, Margalef's species richness index and the relative abundance of rheophilic species and negatively correlated with species turnover (beta diversity). YoY fish communities in poorly connected water bodies were most dissimilar to riverine communities. The results demonstrate the importance of variable lateral connectivity between artificial floodplain waterbodies and main river channels when rehabilitating lowland river fish communities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Reservoirs constructed on floodplain rivers are unique because the upper reaches of the impoundment may include extensive floodplain environments. Moreover, reservoirs that experience large periodic water level fluctuations as part of their operational objectives seasonally inundate and dewater floodplains in their upper reaches, partly mimicking natural inundations of river floodplains. In four flood control reservoirs in Mississippi, USA, we explored the dynamics of connectivity between reservoirs and adjacent floodplains and the characteristics of fish assemblages that develop in reservoir floodplains relative to those that develop in reservoir bays. Although fish species richness in floodplains and bays were similar, species composition differed. Floodplains emphasized fish species largely associated with backwater shallow environments, often resistant to harsh environmental conditions. Conversely, dominant species in bays represented mainly generalists that benefit from the continuous connectivity between the bay and the main reservoir. Floodplains in the study reservoirs provided desirable vegetated habitats at lower water level elevations, earlier in the year, and more frequently than in bays. Inundating dense vegetation in bays requires raising reservoir water levels above the levels required to reach floodplains. Therefore, aside from promoting distinct fish assemblages within reservoirs and helping promote diversity in regulated rivers, reservoir floodplains are valued because they can provide suitable vegetated habitats for fish species at elevations below the normal pool, precluding the need to annually flood upland vegetation that would inevitably be impaired by regular flooding. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

9.
Current efforts to yield an appropriate method that would simplify the use of phytoplankton in the ecological evaluation of freshwaters resulted in different approaches based on clustering phytoplankton organisms. In this study, we applied the morphology‐based functional group (MBFG) concept to determine the spatial changes of phytoplankton in the natural riverine floodplain of the alluvial reaches of the Danube River along the horizontal gradient from the river towards the floodplain habitats. The obtained results showed that the magnitude of environmental changes depended on alternations in hydrological variables (hydropattern and water level) that influenced changes in the physical and chemical conditions. High‐intensity flood pulses caused environmental homogenizations and nitrate enrichment of the floodplain habitats. Phytoplankton dynamics were strongly associated with the environmental changes, and using the MBFG approach, two basic hydrological conditions were identified: inundation phase dominated by diatoms (GVI) and isolation phase dominated by filamentous cyanobacteria (GIII). Total diatom biomass decreased along the floodplain gradient with a diminishing of physical constraints, and site‐specific variables became more important in favouring diatom assemblages. The different response of cyanobacterial species to mixing regime was of particular significance for species successions during bloom period. Altogether, classifying very diverse diatoms (centrics and pennates and planktonic and benthic) and cyanobacterial taxa into single groups represents a weakness of the MBFG approach, which might make it impossible to reflect all the ecological differences governed by environmental constraints along river–floodplain gradients. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Habitat associations of upper Volga river fishes are defined within a cycle of spawning, feeding and overwintering migrations. The migration cycles of resident riverine fishes are categorized as obligate rheophils, limno-rheophils and limnophils. Forty-four fish species in 14 families occurred in the upper Volga River before regulation. Four mainstem reservoirs were constructed on the upper Volga between 1937 and 1957: Ivankovo, Uglich, Rybinsk and Gorky. They are maintained in a stage of delayed and sustained annual flood pulse. Additional impacts of reservoir construction include the creation of a new pelagic habitat, replacement of floodplains by lacustrine littoral and sublittoral habitats, creation of a complex bathyal habitat from former river channels and replacement of riverine flow patterns by pelagic water mass circulations. Populations of rheophilic species declined, while a new pelagophilic fish guild developed. Forty-six fish species are now present; seven species were lost and nine introduced after impoundment. Spawning, feeding and wintering habitats are outlined for reservoir guilds. Ichthyomass increased three to four times following reservoir construction and commercial fish harvest from Rybinsk Reservoir between 1945 and 1992 ranged from 2220 to 4304 t/y. Reservoirs of the upper Volga have limited bioproductivity due to a deficiency and uneven distribution of reproductive habitats, decreasing bottom irregularity, seasonal anomalies of flooding and draining of the littoral and sublittoral and underestimating the importance of tributaries. Lack of littoral reproductive habitat can be remedied by increasing the area of protected littoral through the construction of chains of small islands, diking and reclamation of bogged areas. Improved reproduction of migrating local stocks can be achieved by removing sand bars across tributary mouths, construction of artificial spawning grounds and restoration and preservation of preferred habitats in the main channel.  相似文献   

11.
The suitability of rehabilitated floodplains along the lower River Rhine for rheophilic cyprinids was assessed by investigating the spatial distribution of 0‐group fish among, and within, three newly created secondary channels, an oxbow lake reconnected at its downstream end and several existing groyne fields. Fish were sampled during April through September 1997–1999 with seine nets and trawls and, for each sample, the habitat (physical environment) was characterized (flow, depth, substrate and inundated terrestrial vegetation). The new water bodies provide more suitable habitats for 0‐group fish than the groyne fields. Their beneficial value differs, however, between reproductive guilds and depends on the morphological and hydrological conditions. Total fish density increased along a gradient of decreasing water flow whereas the proportion of rheophilic species (Barbus barbus, Gobio gobio, Leuciscus idus and Aspius aspius) decreased. Flow velocity and water depth were the most important factors determining habitat utilization. Rheophilic fish were spatially separated from eurytopic fish (e.g. Abramis brama, Rutilus rutilus and Stizostedion lucioperca). During flood events, inundated terrestrial vegetation was an important habitat for the larvae of all species. To enhance the riverine fish community, floodplain water bodies should have complex shorelines, and a high variability of flow velocities. Their slopes should be moderate to maximize the probability of terrestrial vegetation getting inundated during spring and summer. Future management of similar floodplains should focus on more diverse and accessible aquatic habitats to increase overall fish species diversity, since different types of water body clearly have complementary values. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
An understanding of the factors controlling the permanent and episodic links between the main stem of a river and the ecosystems of its alluvial floodplain is necessary for evaluating the influence of modern river processes on floodplain ecology and habitat diversity and for the successful implementation of flow regimes that meet human needs for water in a manner that sustains the ecological integrity of affected systems. In this study, we examined relationships between river hydrology and lateral hydrological connectivity, which is crucial to directing fluxes of water, material, and organisms into and across a floodplain. We did so by translating measures of river discharge for the Congaree River into high resolution maps of flood conditions for the floodplain at Congaree National Park using a 2D flood inundation model. Utilizing a graph network approach, we then analyzed the connectivity of a key wetland ecosystem, Taxodium‐Nyssa forested swamps, to the main stem river and to each other under different flows. Our results underscore that floodplain connectivity is initiated at sub‐bankfull discharges and does not depend on levee overtopping, while also clarifying that various sources of connectivity are triggered at different flow levels in specific reaches. Further, our findings demonstrate the sensitive and non‐linear response of floodplain connectivity to river flows and provide useful information to facilitate the management of flood processes in the Congaree River watershed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
大坝运行过程中泄水会对坝下游生态系统产生负面影响,体现在河道生态环境、洪泛区生态环境和河口生态环境中水文水力情势、河道形态和地貌、水质、原有生物生存和繁衍环境等发生变化,生物种类和数量减少,生物多样性降低。因此有必要对河道区、洪泛区和河口区进行水文水质监测、地下水水位监测、鱼类及水生生物监测、动植物种类和生境调查等;同时,确保大坝下游河段环境流量、制定合理的泄水调度方案和实施坝下游生态系统恢复,以期控制负面影响,使坝下游生态系统逐渐呈良性循环。  相似文献   

14.
Annual growth increments were calculated for blue catfish (Ictalurus furcatus) and flathead catfish (Pylodictis olivaris) from the lower Mississippi River (LMR) to assess hypothesized relationships between fish growth and floodplain inundation as predicted by the Flood‐Pulse Concept. Variation in catfish growth increment was high for all age classes of both species, and growth increments were not consistently related to various measures of floodplain inundation. However, relationships became stronger, and usually direct, when water temperature was integrated with area and duration of floodplain inundation. Relationships were significant for four of six age classes for blue catfish, a species known to utilize floodplain habitats. Though similar in direction, relationships were weaker for flathead catfish, which is considered a more riverine species. Our results indicate the Flood‐Pulse Concept applies more strongly to temperate floodplain‐river ecosystems when thermal aspects of flood pulses are considered. We recommend that future management of the LMR should consider ways to ‘recouple’ the annual flood and thermal cycles. An adaptive management approach will allow further determination of important processes affecting fisheries production in the LMR. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
New Zealand's Waikato River has had a short but intense history of development, primarily through land‐use change and flow regulation in the upper river, and in the lower river through flood control works, non‐native species invasion, and land‐use intensification. The river undergoes sharp transitions across montane‐flood plain‐coastal environments over a short distance and under similar climate. Together with specialized life‐history requirements of many native fish, these features provide valuable insights into large river ecology and management. Testing approaches to determine outcomes of water quality changes have highlighted the value of functional indicators over traditional biotic measures for monitoring anthropogenic impacts. Initiatives to enhance native fish populations in the lower river have included remediation of migration barriers to improve access to tributary habitat, enhancement of tidal spawning habitat, and traps and gates to limit movement of large pest fish into flood plain lakes for spawning. This example of a southern temperate large river system highlights the importance of recruitment habitat and connectivity for native fish communities dominated by migratory species. Their slender bodies provide opportunities to create semipermeable barriers that enable access to flood plain habitats while restricting larger invasive fish. Recent initiatives have increased momentum to restore the ecological health of this river, but the underpinning science to guide priority actions is often lacking, and there is limited monitoring over the scales and time frames required to evaluate effectiveness.  相似文献   

16.
Large floodplain rivers have internal structures shaped by directions and rates of water movement. In a previous study, we showed that spatial variation in local current velocities and degrees of hydrological exchange creates a patch‐work mosaic of nitrogen and phosphorus concentrations and ratios in the Upper Mississippi River. Here, we used long‐term fish and limnological data sets to test the hypothesis that fish communities differ between the previously identified patches defined by high or low nitrogen to phosphorus ratios (TN:TP) and to determine the extent to which select limnological covariates might explain those differences. Species considered as habitat generalists were common in both patch types but were at least 2 times as abundant in low TN:TP patches. Dominance by these species resulted in lower diversity in low TN:TP patches, whereas an increased relative abundance of a number of rheophilic (flow‐dependent) species resulted in higher diversity and a more even species distribution in high TN:TP patches. Of the limnological variables considered, the strongest predictor of fish species assemblage and diversity was water flow velocity, indicating that spatial patterns in water‐mediated connectivity may act as the main driver of both local nutrient concentrations and fish community composition in these reaches. The coupling among hydrology, biogeochemistry, and biodiversity in these river reaches suggests that landscape‐scale restoration projects that manipulate hydrogeomorphic patterns may also modify the spatial mosaic of nutrients and fish communities. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

17.
Historical trends in hydrology, geomorphology, and floodplain vegetation provide fundamental contexts for designing future management of large rivers, an area of fluvial research extensively informed by studies of historical channel dynamics. Changes in hydrology, channel structure, floodplain forests, and large wood were documented for the 273‐km main stem of the Willamette River from 1850 to present. Reduced sediment supply and frequency and magnitude of floods have decreased channel mobility and incised channels, leading to fewer gravel bars, islands, and side channels. Human alteration of channel morphology, vegetation, and bank hardening has exacerbated channel simplification caused by reductions in floods, sediment supply, and inputs of wood. A substantial number of floodplain channels reoccupied remnants of previous active channels inundated during recent floods, demonstrating functional but often forgotten role of historical geomorphic structure in modern floodplains and flood processes. In most reaches, area of floodplain forests in 1990 was only 10% to 25% of the area of forests in 1850. Abundance of wood in the wetted channel was generally greater in reaches with higher abundances of floodplain forests. Future trajectories will be influenced by legacies of the historical river but increasingly will reflect evolution of a new river shaped by human development, changing climate, and emerging hydrogeomorphic and vegetation processes. Understanding historical characteristics and anticipating future rates and patterns of ecosystem change provide fundamental contexts for restoring biophysical processes and structure in a large floodplain river.  相似文献   

18.
The introduction of weirs into stream ecosystems resulted in modifications of serial continuity and in the decline of riverine fish species. Successful river restoration requires information on the ecological functionality of fish bypass channels that are considered an ecological improvement according to the European Water Framework Directive. In this study, we compared the functionality of three nature‐oriented fish passes as compensatory habitats and migration corridors for fishes. Fish passes differed significantly from upstream and downstream reaches of the weirs, revealing higher current speed, lower water depth, smaller channel width and greater habitat variability. Following these structural differences, they provided key habitats for juvenile, small and rheophilic fishes that are typically underrepresented in highly modified water bodies. All fish passes were used as migration corridors, with increased fish movements during high discharge and at spawning periods. Because river stretches with high variability of current speed and water depth are scarce in highly modified water bodies, fish passes can play an important role as compensatory habitats and should thus be considered more intensively in habitat assessments and river restoration. Ideally, fish bypasses should mirror the natural discharge dynamics and consider all occurring fish species and sizes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
An understanding of the processes that determine plant community structure is a requisite for the planning and evaluation of restoration efforts on river floodplains. Variable disturbance regimes derived from flood pulses increase the susceptibility of river floodplains to colonizations by new species and establish invasibility as a potentially important factor in plant community assembly and dynamics. The role of invasibility in the restoration of a wet prairie community on the Kissimmee River floodplain in central Florida was evaluated by quantifying temporal species turnover rates during wet and dry season sampling over a 12‐year pre‐restoration and post‐restoration period. Turnover rates increased with reestablishment of annual inundation regimes and were significantly greater on the reflooded floodplain than on the drained, channelized floodplain. Recurrent periods of increased invasibility were associated with repeated high‐amplitude flood pulses and accompanied by increased diversity of plant communities within the wet prairie landscape. Neither invasibility nor beta diversity was strongly related to the variable hydroperiods or depths provided by local topography and restoration of seasonal hydrologic regimes. Results suggest that invasibility is a functional process by which the restored flood pulse has reestablished the structure and diversity of the wet prairie. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Phytoplankton communities along the river Yamuna in Delhi stretch and its associated floodplain lakes showed considerable spatio‐temporal variations. Most of the species identified were cosmopolitan and typical of highly polluted rivers in tropical ecosystems. All the groups of phytoplankton with predominance of Cyanophyceae and some species of Chlorophyceae were distributed within the river stretch though with varying diversity and density. Relatively cleaner sites supported larger phytoplankton assemblages compared to those subjected to sewage outfalls and industrial effluents. Species elimination was observed mainly in the mid‐stretch and downstream of Okhla subjected to high loads of pollution. Co‐inertia analysis indicated significant co‐structures between water quality and species richness and density indicating water quality as the governing factor for phytoplankton distributions in the river stretch. Floodplain plays an important role in regenerating water quality thereby enhancing species richness and density. Floods play an important role in seasonal dynamics through dilution effects and promoting connectivity between river channel and floodplain lakes thereby facilitating species exchanges. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号