首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The paper describes the development and characterization of analytical properties of quantum dot-based probes for enzymatic activity and for screening enzyme inhibitors. The luminescent probes are based on fluorescence resonance energy transfer (FRET) between luminescent quantum dots that serve as donors and rhodamine acceptors that are immobilized to the surface of the quantum dots through peptide linkers. Peptide-coated CdSe/ZnS quantum dots were prepared using a one-step ligand exchange process in which RGDC peptide molecules replace trioctylphosphine oxide (TOPO) molecules as the capping ligands of the quantum dots. The peptide molecules were bound to the surface of the CdSe/ZnS quantum dots through the thiol group of the peptide cysteine residue. The peptide-coated quantum dots were labeled with rhodamine to form the FRET probes. The emission quantum yield of the quantum dot FRET probes was 4-fold lower than the emission quantum yield of TOPO-capped quantum dots. However, the quantum dot FRET probes were sufficiently bright to enable quantitative enzyme and enzyme inhibition assays. The probes were used first to test the enzymatic activity of trypsin in solution based on FRET signal changes of the quantum dot-based enzymatic probes in the presence of proteolytic enzymes. For example, exposure of the quantum dot FRET probes to 500 microg/mL trypsin for 15 min resulted in 60% increase in the photoluminescence of the quantum dots and a corresponding decrease in the emission of the rhodamine molecules. These changes resulted from the release of rhodamine molecules from the surface of the quantum dots due to enzymatic cleavage of the peptide molecules. The quantum dot FRET-based probes were used to monitor the enzymatic activity of trypsin and to screen trypsin inhibitors for their inhibition efficiency.  相似文献   

2.
Aggregation induced emission (AIE) has attracted considerable interest for the development of fluorescence probes. However, controlling the bioconjugation and cellular labeling of AIE dots is a challenging problem. Here, this study reports a general approach for preparing small and bioconjugated AIE dots for specific labeling of cellular targets. The strategy is based on the synthesis of oxetane‐substituted AIEgens to generate compact and ultrastable AIE dots via photo‐crosslinking. A small amount of polymer enriched with oxetane groups is cocondensed with most of the AIEgens to functionalize the nanodot surface for subsequent streptavidin bioconjugation. Due to their small sizes, good stability, and surface functionalization, the cell‐surface markers and subcellular structures are specifically labeled by the AIE dot bioconjugates. Remarkably, stimulated emission depletion imaging with AIE dots is achieved for the first time, and the spatial resolution is significantly enhanced to ≈95 nm. This study provides a general approach for small functional molecules for preparing small sized and ultrastable nanodots.  相似文献   

3.
Colloidal quantum dots are semiconductor nanocrystals well dispersed in a solvent. The optical properties of quantum dots, in particular the wavelength of their fluorescence, depend strongly on their size. Because of their reduced tendency to photobleach, colloidal quantum dots are interesting fluorescence probes for all types of labelling studies. In this review we will give an overview on how quantum dots have been used so far in cell biology. In particular we will discuss the biologically relevant properties of quantum dots and focus on four topics: labelling of cellular structures and receptors with quantum dots, incorporation of quantum dots by living cells, tracking the path and the fate of individual cells using quantum dot labels, and quantum dots as contrast agents.  相似文献   

4.
Quantum dots were proposed as new fluorochromes for use in fluorescence in-situ hybridization. EBV-encoded small RNA, the most abundant viral product in latently infected cells, was detected by quantum dot fluorescence in-situ hybridization in paraffin-embedded tissue sections of gastric carcinoma. An indirect FISH approach using quantum dots streptavidin conjugates as secondary reporters and digoxigenin labeled EBV-encoded small RNA oligonucleotide probes as detectable molecules was employed. Quantum dot fluorescence in-situ hybridization offered a slightly higher sensitivity in detecting EBV-encoded small RNA in gastric carcinoma than chromogenic in-situ hybridization. Statistical analyses showed that the detected EBV-associated gastric carcinoma was not associated with any clinicopathological parameters of the Chinese gastric carcinoma patients investigated in this study.  相似文献   

5.
Circulating tumor cells (CTCs) are valuable biomarkers for monitoring the status of cancer patients and drug efficacy. However, the number of CTCs in the blood is extremely low, and the isolation and detection of CTCs with high efficiency and sensitivity remain a challenge. Here, we present an approach to the efficient capturing and simple quantification of CTCs using quantum dots and magnetic beads. Anti‐EpCAM antibody‐conjugated quantum dots are used for the targeting and quantification of CTCs, and quantum‐dot‐attached CTCs are isolated using anti‐IgG‐modified magnetic beads. Our approach is shown to result in a capture efficiency of about 70%–80%, enabling the simple quantification of captured CTCs based on the fluorescence intensity of the quantum dots. The present method can be used effectively in the capturing and simple quantification of CTCs with high efficiency for cancer diagnosis and monitoring.  相似文献   

6.
This review describes the recent progress made in exploiting the light emitting properties of quantum dots as luminescent probes for the investigation of non-covalent interactions between two or more biological molecules. The properties of quantum dots and conventional fluorescent probes are compared and methods for attaching quantum dots to biomolecules examined. Such attachment generally involves two stages: quantum dot capping/coating and subsequent covalent or non-covalent linkage to the biomolecule of interest. Both are addressed. Finally, the use of quantum dots in biological assays is exemplified and the future roles of quantum dots discussed.  相似文献   

7.
Bioconjugation of quantum dots has resulted in a significant increase in resolution of biological fluorescent labeling. This intrinsic property of quantum dots can be utilized for sensitive detection of target analytes with high sensitivity; including pathogenic bacteria and cancer monitoring. The quantum dots and quantum dot doped silica nanoparticles exhibit prominent emission peaks when excited at 400 nm but on conjugation to model rabbit antigoat antibodies exhibit diminished intensity of emission peak at 600 nm. It shows that photoluminescence intensity of conjugated quantum dots and quantum dot doped silica nanoparticles could permit the detection of bioconjugation. Samples of conjugated and unconjugated quantum dots and quantum dot doped silica nanoparticles were subjected to enzyme linked immunosorbent assay for further confirmation of bioconjugation. In the present study ligand exchange, bioconjugation, fluorescence detection of bioconjugated quantum dots and quantum dot doped silica nanoparticles and further confirmation of bioconjugation by enzyme linked immunosorbent assay has been described.  相似文献   

8.
We report time-resolved single molecule fluorescence imaging of individual CdSe quantum dots that are functionalized with oligomeric conjugated organic ligands. The fluorescence intensity trajectories from these composite nanostructures display both a strong degree of blinking suppression and intensity fluctuations with characteristic recurrence times on the order of 10-60?s. In addition, fluorescence decay rate measurements of individual hybrid nanostructures indicate significantly modified non-radiative quantum dot decay rates relative to conventional ZnS-capped CdSe quantum dots. We show that a modified diffusive reaction coordinate model with slow fluctuations in quantum dot electron energies (1S(e), 1P(e)) can reproduce the experimentally observed behaviour.  相似文献   

9.
A method for the rapid quantitative analysis of dot blot assays is presented. A video camera, an NTSC compatible frame grabber board, and an AT personal computer are used to read photographic exposures of the assay plate. Image processing and image analysis techniques are used to calculate the orientation of the dot raster and then to compensate for the effect of variations in field illumination on measurements of local contrast. Local contrast (between dots and background) is an exponential function of the amount of hybridization between blotted DNA and complimentary oligonucleotide probes. The amount of hybridization between blotted DNA and oligonucleotide probes of known sequence is the criteria used to establish HLA-DR tissue types. Although the assay described here utilizes a chemiluminescent reaction, this algorithm may be used to read any assay that produces a rectangular raster of dots.  相似文献   

10.
DNA self‐assembly is a powerful tool to arrange optically active components with high accuracy in a large parallel manner. A facile approach to assemble plasmonic antennas consisting of two metallic nanoparticles (40 nm) with a single colloidal quantum dot positioned at the hot spot is presented here. The design approach is based on DNA complementarity, stoichiometry, and steric hindrance principles. Since no intermediate molecules other than short DNA strands are required, the structures possess a very small gap (≈ 5 nm) which is desired to achieve high Purcell factors and plasmonic enhancement. As a proof‐of‐concept, the fluorescence emission from antennas assembled with both conventional and ultrasmooth spherical gold particles is measured. An increase in fluorescence is obtained, up to ≈30‐fold, compared to quantum dots without antenna.  相似文献   

11.
We report a simple method to fabricate quantum‐dot‐sized nanoparticles (NPs) from poly[9,9‐bis((6‐N,N,N‐trimethylammonium)hexyl)fluorene‐altco‐2,1,3‐benzo­xadiazole dibromide] (PFBD). The transmission electron microscope results reveal that the obtained NPs have a mean diameter of ≈4 nm, which is composed of a single PFBD chain. The NPs show bright fluorescence with an emission maximum at ≈636 nm and a quantum yield of ≈26% in water. The fluorescence properties of the NPs are characterized by steady fluorescence microscopy, fluorescence dynamic study and single nanoparticle microscopy, which show superior brightness over commercial quantum dots QD655. The NPs are further conjugated with streptavidin to yield PFBD‐SA NPs, which serve as a specific extracellular labeling and imaging probe with high specificity and good photostability.  相似文献   

12.
The effect of the external charge trap on the photoluminescence blinking dynamics of individual colloidal quantum dots is investigated with a series of colloidal quantum dot–bridge–fullerene dimers with varying bridge lengths, where the fullerene moiety acts as a well‐defined, well‐positioned external charge trap. It is found that charge transfer followed by charge recombination is an important mechanism in determining the blinking behavior of quantum dots when the external trap is properly coupled with the excited state of the quantum dot, leading to a quasi‐continuous distribution of ‘on' states and an early fall‐off from a power‐law distribution for both ‘on' and ‘off' times associated with quantum dot photoluminescence blinking.  相似文献   

13.
Carbon dots (CDs) are carbon‐based fluorescent nanoparticles that can exhibit excitation‐dependent photoluminescence (PL) “tunable” throughout the entire visible range, interesting for optoelectronic and imaging applications. The mechanism underlying this tunable emission remains largely debated, most prominently being ascribed to dot‐to‐dot variations that ultimately lead to excitation‐dependent ensemble properties. Here, single‐dot spectroscopy is used to elucidate the origin of the excitation‐dependent PL of CDs. It is demonstrated that already single CDs exhibit excitation‐dependent PL spectra, similar to those of the CD ensemble. The single dots, produced by a facile one‐step synthesis from chloroform and diethylamine, exhibit emission spectra with several characteristic peaks differing in emission peak position and spectral width and shape, indicating the presence of distinct emission sites on the CDs. Based on previous work, these emission sites are related to the sp2 subregions in the carbon core, as well as the functional groups on the surface. These results confirm that it is possible to integrate and engineer different types of electronic transitions at the nanoscale on a single CD, making these CDs even more versatile than organic dyes or inorganic quantum dots and opening up new routes toward light‐emission engineering.  相似文献   

14.
Stimulated emission depletion (STED) nanoscopy is one of the most promising super‐resolution imaging techniques for microstructure imaging. Commercial CdSe@ZnS quantum dots are used as STED probes and ≈50 nm lateral resolution is obtained. Compared with other quantum dots, perovskite CsPbBr3 nanoparticles (NPs) possess higher photoluminescence quantum yield and larger absorption cross‐section, making them a more effective probe for STED nanoscopy. In this study, CsPbBr3 NPs are used as probes for STED nanoscopy imaging. The fluorescence intensity of the CsPbBr3 sample is hardly weakened at all after 200 min irradiation with a 39.8 mW depletion laser, indicating excellent photobleaching resistance of the CsPbBr3 NPs. The saturation intensity of the CsPbBr3 NPs is extremely low and estimated to be only 0.4 mW (0.126 MW cm?2). Finally, an ultrahigh lateral resolution of 20.6 nm is obtained for a single nanoparticle under 27.5 mW STED laser irradiation in CsPbBr3‐based STED nanoscopy imaging, which is a tenfold improvement compared with confocal microscopy. Because of its high fluorescence stability and ultrahigh resolution under lower depletion power, CsPbBr3‐assisted STED nanoscopy has great potential to investigate microstructures that require super‐resolution and long‐term imaging.  相似文献   

15.
Emission of semiconductor quantum dots can be increased via two fundamentally different processes: (i) surface plasmon resonances (plasmonic emission enhancement) and (ii) irradiation with light (photo-induced fluorescence enhancement). In this paper we theoretically and experimentally study the mutual impacts of these processes on each other in quantum dot solids. We show that when thin films of colloidal quantum dots are placed in the vicinity of Au nano-islands, the plasmonic enhancement of the radiative decay rates of quantum dots and Forster energy transfer can hinder the photo-induced fluorescence enhancement of these films. This in turn leads to significant suppression of their plasmonic emission enhancement when they are irradiated with a laser beam. We investigate the impact of the sizes and shapes of the metallic nanoparticles in this process and theoretically analyze how plasmons and energy transfer can hinder the electrostatic barrier responsible for photo-induced fluorescence enhancement.  相似文献   

16.
Mitochondria play a significant role in many cellular processes. Precise long‐term tracking of mitochondrial status and behavior is very important for regulating cell fate and treating mitochondrial diseases. However, developing probes with photostability, long‐term tracking capability, and tunable long‐wavelength fluorescence has been a challenge in mitochondrial targeting. Carbon dots (CDs) as new fluorescent nanomaterials with low toxicity and high stability show increasing advantages in bioimaging. Herein, the mitochondria tracking CDs (MitoTCD) with intrinsic mitochondrial imaging capability and tunable long‐wavelength fluorescence from green to red are synthesized where the lipophilic cation of rhodamine is served as the luminescent center of CDs. Due to the excellent photostability, superior fluorescence properties and favorable biocompatibility, these MitoTCD are successfully used for mitochondrial targeting imaging of HeLa cells in vitro and can be tracked as long as six passages, which is suitable for long‐term cell imaging. Moreover, these MitoTCD can also be used for zebrafish imaging in vivo.  相似文献   

17.
Topography and electrical properties of InAs quantum dots Self assembled InAs‐islands were grown on GaAs with molecular beam epitaxy in the Stranski‐Krastanow growth mode. The topography of surface quantum dots was investigated by atomic force (AFM) and scanning electron microscopy (SEM). While the AFM enables to determine the dot height of ≈ 10 nm the SEM is best suited to study the lateral dimensions of uncapped islands. The latter technique gives a dot diameter of ≈ 30 nm. Although the size distribution of the islands is convoluted in the capacitance measurements on a dot ensemble, it was possible to determine roughly a Coulomb blockade energy of ≈ 20 meV for the ground state and ≈ 10 meV for the first excited dot level. Taking advantage of AFM‐lithography we were able to study electron transport through a single InAs island. Here we got a Coulomb blockade energy of 12 meV when electrons tunnel through the first excited state of the dot.  相似文献   

18.
Time-correlated single photon counting methods are used with confocal microscopy and maximum likelihood estimation analysis to obtain fluorescence lifetime trajectories for single quantum dots with KHz update rates. This technique reveals that control of the solution environment can influence both radiative (k(rad)) and nonradiative (k(nonrad)) pathways for electron-hole recombination emission in a single quantum dot and provides a novel contribution mechanism to nearly complete suppression of quantum dot blinking, specifically by an increase in k(rad*).  相似文献   

19.
Light‐emitting semiconductor quantum dots (QDs) combined with magnetic resonance imaging contrast agents within a single nanoparticle platform are considered to perform as multimodal imaging probes in biomedical research and related clinical applications. The principles of their rational design are outlined and contemporary synthetic strategies are reviewed (heterocrystalline growth; co‐encapsulation or assembly of preformed QDs and magnetic nanoparticles; conjugation of magnetic chelates onto QDs; and doping of QDs with transition metal ions), identifying the strengths and weaknesses of different approaches. Some of the opportunities and benefits that arise through in vivo imaging using these dual‐mode probes are highlighted where tumor location and delineation is demonstrated in both MRI and fluorescence modality. Work on the toxicological assessments of QD/magnetic nanoparticles is also reviewed, along with progress in reducing their toxicological side effects for eventual clinical use. The review concludes with an outlook for future biomedical imaging and the identification of key challenges in reaching clinical applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号