首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with numerical modeling of the hydraulic blade pitch actuator and its effect on the dynamic responses of a floating spar‐type wind turbine under valve fault conditions. A spar‐type floating wind turbine concept is modeled and simulated using an aero‐hydro‐servo‐elastic simulation tool (Simo‐Riflex [SR]). Because the blade pitch system has the highest failure rate, a numerical model of the hydraulic blade pitch actuator with/without valve faults is developed and linked to SR to study the effects of faults on global responses of the spar‐type floating wind turbine for different faults, fault magnitudes, and environmental conditions. The consequence of valve faults in the pitch actuator is that the blade cannot be pitched to the desired angle, so there may be a delay in the response due to excessive friction and the wrong voltage, or slit lock may cause runaway blade pitch. A short circuit may cause the blade to get stuck at a particular pitch angle. These faults contribute to rotor imbalance, which result in different effects on the turbine structure and the platform motions. The proposed method for combining global and hydraulic actuator models is demonstrated in case studies with stochastic wind and wave conditions and different types of valve faults.  相似文献   

2.
The aerodynamic performance of offshore floating wind turbines (OFWTs) is more complicated than onshore wind turbines due to 6‐degree of freedom (DOF) motion of the floating platform. In the current study, the aerodynamic analysis of a horizontal‐axis floating offshore wind turbine is performed with the aim of studying the effects of floating platform movement on the aerodynamic characteristics of the turbine in the presence of a pitch angle control system. The National Renewable Energy Laboratory (NREL) 5‐MW offshore wind turbine is selected as the baseline wind turbine. For this sake, the unsteady blade element momentum method with dynamic stall and dynamic inflow models have been employed to obtain the unsteady aerodynamic loads. The baseline pitch angle control system is assumed to be coupled with the aerodynamic model to maintain the rated condition of the wind turbine and also to approach a closer model of wind turbine. In case of pitching motion input, the reduction of mean power coefficient for tip speed ratios (TSRs) less that 7 is expected by an amount of 16% to 20% at pitch amplitude of 2° and frequency of 0.1 Hz. For high TSRs, the trend is reverse with respect to fixed‐platform case. The mean thrust coefficient is reduced for almost all range of TSRs with maximum loss of 37%. Moreover, the mean control pitch angle that is an index of control system effort is increased. The results also represent the importance of considering the pitch control system for aerodynamic analysis of disturbed OFWT.  相似文献   

3.
Yanhua Liu  Ron J. Patton  Shuo Shi 《风能》2020,23(7):1523-1541
Offshore wind turbines suffer from asymmetrical loading (blades, tower, etc), leading to enhanced structural fatigue. As well as asymmetrical loading different faults (pitch system faults etc.) can occur simultaneously, causing degradation of load mitigation performance. Individual pitch control (IPC) can achieve rotor asymmetric loads mitigation, but this is accompanied by an enhancement of pitch movements leading to the increased possibility of pitch system faults, which exerts negative effects on the IPC performance. The combined effects of asymmetrical blade and tower bending together with pitch sensor faults are considered as a “co‐design” problem to minimize performance deterioration and enhance wind turbine sustainability. The essential concept is to attempt to account for all the “fault effects” in the rotor and tower systems, which can weaken the load reduction performance through IPC. Pitch sensor faults are compensated by the proposed fault‐tolerant control (FTC) strategy to attenuate the fault effects acting in the control system. The work thus constitutes a combination of IPC‐based load mitigation and FTC acting at the pitch system level. A linear quadratic regulator (LQR)‐based IPC strategy for simultaneous blade and tower loading mitigation is proposed in which the robust fault estimation is achieved using an unknown input observer (UIO), considering four different pitch sensor faults. The analysis of the combined UIO‐based FTC scheme with the LQR‐based IPC is shown to verify the robustness and effectiveness of these two systems acting together and separately.  相似文献   

4.
Multi-rotor floating wind turbines are among the innovative technologies proposed in the last decade in the effort to reduce the cost of wind energy. These systems are able to offer advantages in terms of smaller blades deployed offshore, cheaper operations, fewer installations, and sharing of the floating platform. As the blade-pitch actuation system is prone to failures, the assessment of the associated load scenarios is commonly required. Load assessment of blade-pitch fault scenarios has only been performed for single-rotor solutions. In this work, we address the effect of blade-pitch system faults and emergency shutdown on the dynamics and loads of a two-rotor floating wind turbine. The concept considered employs two NREL 5-MW baseline wind turbines and the OO-Star semi-submersible platform. The blade-pitch faults investigated are blade blockage and runaway, that is, the seizure at a given pitch angle and the uncontrolled actuation of one of the blades, respectively. Blade-pitch faults lead to a significant increase in the structural loads of the system, especially for runaway fault conditions. Emergency shutdown significantly excites the platform pitch motion, the tower-bottom bending moment, and tower torsional loads, while suppressing the faulty blade flapwise bending moment after a short peak. Shutdown delay between rotors increases significantly the maxima of the torsional loads acting on the tower. Comparison of blade loads with data from single-rotor spar-type study show great similarity, highlighting that the faulty blade loads are not affected by (1) the type of platform used and (2) the multi-rotor deployment.  相似文献   

5.
This study focuses on the dynamic responses of land‐based and floating wind turbines under blade pitch system fault and emergency shutdown conditions. The NREL 5 MW turbine is studied. A hydraulic pitch system is considered, and the faults under study are events with a seized blade or a blade running out of control. Emergency shutdown is defined as a fast pitch‐to‐feather maneuver of the blades. Load cases with power production and grid fault with ensuing shutdown are also analysed for comparison. The fault scenarios and the blades' fast pitching activity are simulated using HAWC2 through external Dynamic Link Libraries. On the basis of the time‐domain simulations, the response characteristics of the land‐based and the floating turbines in the four design load cases are compared. The load effects from the fault conditions are compared with the operational cases. Strong system dynamics and resonant responses, such as the tower elastic mode and the yaw resonant response, are elicited during shutdown. If the pitch system has a fault and one blade is hindered from normal pitching, the uneven load distribution of the blades leads to large structural and motion responses. For both turbines, the response maxima vary cyclically with the instantaneous azimuth when the blades start pitching to feather. For the floating wind turbine, the interaction of waves and wind also affects the results. The effect of the pitch rate during shutdown is analysed. The responses of the land‐based turbine in grid loss and shutdown conditions are proportional to the pitch rate, whereas decreased sensitivity is found in the cases with pitch system faults. For the floating turbine, the effect of the pitch rate is small, and reduced pitch and yaw motion extremes are observed as the pitch rate increases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
为探究大型水平轴风力机达到切出风速停机后变桨故障叶片的气动特性及准静态结构响应,基于计算流体力学方法对NREL 5 MW风力机变桨故障/成功叶片气动侧状态进行分析,并利用双向弱流固耦合及曲屈分析对典型方位角下变桨故障叶片展开研究。结果显示:切出风速下变桨故障叶片挥舞力矩平均值为变桨成功叶片的13.8倍,且前者的流场尾迹更为明显。此外,180°方位角变桨故障叶片较之0°方位角变桨故障叶片应力及叶尖位移分别减小29.8%和32.7%,一阶屈曲因子增加20.2%。  相似文献   

7.
H. Namik  K. Stol 《风能》2010,13(1):74-85
Floating wind turbines offer a feasible solution for going further offshore into deeper waters. However, using a floating platform introduces additional motions that must be taken into account in the design stage. Therefore, the control system becomes an important component in controlling these motions. Several controllers have been developed specifically for floating wind turbines. Some controllers were designed to avoid structural resonance, while others were used to regulate rotor speed and platform pitching. The development of a periodic state space controller that utilizes individual blade pitching to improve power output and reduce platform motions in above rated wind speed region is presented. Individual blade pitching creates asymmetric aerodynamic loads in addition to the symmetric loads created by collective blade pitching to increase the platform restoring moments. Simulation results using a high‐fidelity non‐linear turbine model show that the individual blade pitch controller reduces power fluctuations, platform rolling rate and platform pitching rate by 44%, 39% and 43%, respectively, relative to a baseline controller (gain scheduled proportional–integral blade pitch controller) developed specifically for floating wind turbine systems. Turbine fatigue loads were also reduced; tower side–side fatigue loads were reduced by 39%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
X. Wei  M. Verhaegen 《风能》2011,14(4):491-516
In this paper, we consider sensor and actuator fault detection and estimation issues for large scale wind turbine systems where individual pitch control (IPC) is used for load reduction. The faults considered are the blade root bending moment sensor faults and blade pitch actuator faults. In the first part, with the aid of a dynamical model of the wind turbine system, a so‐called H/H? observer in the finite frequency range, is applied to generate the residual for fault detection. The observer is designed to be sensitive to faults but insensitive to disturbances, such as wind turbulence. When there is a detectable fault, the observer sends an alarm signal if the residual evaluation is larger than a predefined threshold. In addition to the fault detection, we also consider the fault estimation problem, where a dynamic filter is used to estimate the fault magnitude. The effectiveness of the proposed approach is demonstrated by simulation results for several fault scenarios. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Modern offshore wind turbines are susceptible to blade deformation because of their increased size and the recent trend of installing these turbines on floating platforms in deep sea. In this paper, an aeroelastic analysis tool for floating offshore wind turbines is presented by coupling a high‐fidelity computational fluid dynamics (CFD) solver with a general purpose multibody dynamics code, which is capable of modelling flexible bodies based on the nonlinear beam theory. With the tool developed, we demonstrated its applications to the NREL 5 MW offshore wind turbine with aeroelastic blades. The impacts of blade flexibility and platform‐induced surge motion on wind turbine aerodynamics and structural responses are studied and illustrated by the CFD results of the flow field, force, and wake structure. Results are compared with data obtained from the engineering tool FAST v8.  相似文献   

10.
借鉴陆上风力机基于状态空间法的干扰自适应控制,在状态空间中考虑海上浮式风力机支撑平台运动自由度,采用状态观测器评估系统各状态量,研究不同干扰自适应变桨距控制对海上浮式风力机控制性能的影响,并与FAST基础控制对比分析。结果表明:海上浮式风力机变桨距控制设计应基于状态空间法的干扰自适应控制,同时在状态空间中应考虑平台纵荡、纵摇及艏摇自由度。  相似文献   

11.
As the size of wind turbines increases, the load alleviating capabilities of the turbine controller are becoming increasingly important. Load alleviating control schemes have traditionally been based on feedback from load sensor; however, recent developments of measurement technologies have enabled control on the basis of preview measurements of the inflow acquired using, e.g., light detection and ranging. The potential of alleviating load variations that are caused by mean wind speed changes through feed‐forward control have been demonstrated through both experiments and simulations in several studies, whereas the potential of preview control for alleviating the load variations caused by azimuth dependent inflow variations is less described. Individual or cyclic pitch is required to alleviate azimuth dependent load variations and is traditionally applied through feedback control of the blade root loads. In many existing studies, the performance of an advanced controller is compared with the performance of a simpler controller. In this study, the effect of three measurement types on the load alleviating performance of the same cyclic pitch control design is studied. By using a baseline cyclic pitch controller as test bench, the effect of the different measurement types on the controller performance can be assessed independent of control design. The three measurement types that are considered in this study are as follows: blade root out‐of‐plane bending moment, on‐blade measurements of angle of attack and relative velocity at a radial position of the blades, and upstream inflow measurements from a spinner mounted light detection and ranging (LiDAR) sensor that enables preview of the incoming flow field. The results show that for stationary inflow conditions, the three different measurement types yield similar load reductions, but for varying inflow conditions, the LiDAR sensor‐based controller yields larger load reductions than the two others. The results also show that the performance of the LiDAR sensor‐based controller is very sensitive to uncertainties relating to the inflow estimation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The possibility of a pitch instability for floating wind turbines, due to the blade‐pitch controller, has been discussed extensively in recent years. Contrary to many advanced multi‐input‐multi‐output controllers that have been proposed, this paper aims at a standard proportional‐integral type, only feeding back the rotor speed error. The advantage of this controller is its standard layout, equal to onshore turbines, and the clearly defined model‐based control design procedure, which can be fully automated. It is more robust than most advanced controllers because it does not require additional signals of the floating platform, which make controllers often sensitive to unmodeled dynamics. For the design of this controller, a tailored linearized coupled dynamic model of reduced order is used with a detailed representation of the hydrodynamic viscous drag. The stability margin is the main design criterion at each wind speed. This results in a gain scheduling function, which looks fundamentally different than the one of onshore turbines. The model‐based controller design process has been automated, dependent only on a given stability margin. In spite of the simple structure, the results show that the controller performance satisfies common design requirements of wind turbines, which is confirmed by a model of higher fidelity than the controller design model. The controller performance is compared against an advanced controller and the fixed‐bottom version of the same turbine, indicating clearly the different challenges of floating wind control and possible remedies.  相似文献   

13.
Previous research for detecting incipient wind turbine failures, using condition monitoring algorithms, concentrated on wind turbine Supervisory Control and Data Acquisition (SCADA) signals, such as power output, wind speed and bearing temperatures, using power‐curve and temperature relationships. However, very little research effort has been made on wind turbine SCADA alarms. When wind turbines are operating in significantly sized wind farms, these alarm triggers are overwhelming for operators or maintainers alike because of large number occurring in a 10 min SCADA period. This paper considers these alarms originating in two large populations of modern onshore wind turbines over a period of 1–2 years. First, an analysis is made on where the alarms originate. Second, a methodology for prioritizing the alarms is adopted from an oil and gas industry standard to show the seriousness of the alarm data volume. Third, two methods of alarm analysis, time‐sequence and probability‐based, are proposed and demonstrated on the data from one of the wind turbine populations, considering pitch and converter systems with known faults. The results of this work show that alarm data require relatively little storage yet provide rich condition monitoring information. Both the time‐sequence and probability‐based analysis methods have the potential to rationalize and reduce alarm data, providing valuable fault detection, diagnosis and prognosis from the conditions under which the alarms are generated. These methods should be developed and integrated into an intelligent alarm handling system for wind farms, aimed at improving wind turbine reliability to reduce downtime, increase availability and leading to a well‐organized maintenance schedule. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
针对传统PID变桨控制器参数自调整性能较差,适应性不强的问题,文章提出了风电机组变初值模糊PI变桨控制算法。通过模糊控制算法实现了PI参数的自动调节,根据风速大小设计了合理的变初值调整算法,实现了模糊控制器初值的在线调节。基于FAST风机软件中5 MW陆上风电机组非线性模型,分析了风电机组在额定风速以上运行时变桨系统的动态特性,从算法结构出发,设计了合适的模糊规则和量化、比例因子以及变初值调整算法,在Matlab/Simulink中搭建了变初值模糊PI变桨控制策略。通过仿真验证了控制策略在抑制转速波动和风机叶片、塔基受力力矩波动方面具有较好的效果。  相似文献   

15.
Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial‐induction‐based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high‐order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial‐induction‐based control shown in the high‐order model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Floating offshore wind turbines are gaining considerable interest in the renewable energy sector. Design standards for floating offshore wind turbines such as the American Bureau of Shipping (ABS) Guide for Building and Classing Floating Offshore Wind Turbine Installations are relatively new and few if any floating wind turbines have yet experienced the prescribed design extreme environmental conditions. Only a few pilot floating turbines have been deployed in Europe and Japan. These turbines have been designed for long return period storm events and are not likely to see their extreme design conditions during early deployment periods because of the low probability of occurrence. This paper presents data collected for an intermediate scale floating semi‐submersible turbine intentionally placed offshore Maine in a carefully selected site that subjects the prototype to scale extreme conditions on a frequent basis. This prototype, called VolturnUS 1:8, was the first grid‐connected offshore wind turbine in the Americas, and is a 1:8 scale model of a 6 MW prototype. The test site produces with a high probability 1:8 scale wave environments, and a commercial turbine has been selected so that the wind environment/rotor combination produces 1:8‐scale aerodynamic loads appropriate for the site wave environment. In the winter of 2013–2014, this prototype has seen the equivalent of 50 year to 500 year return period storms exercising it to the limits prescribed by design standards, offering a unique look at the behavior of a floating turbine subjected to extreme design conditions. Performance data are provided and compared to full‐scale predicted values from numerical models. There are two objectives in presenting this data and associated analysis: (i) validate numerical aeroelastic hydrodynamic coupled models and (ii) investigate the performance of a near full‐scale floating wind turbine in a real offshore environment that closely matches the prescribed design conditions from the ABS Guide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The increasing size of modern wind turbines also increases the structural loads caused by effects such as turbulence or asymmetries in the inflowing wind field. Consequently, the use of advanced control algorithms for active load reduction has become a relevant part of current wind turbine control systems. In this paper, an individual blade pitch control law is designed using multivariable linear parameter‐varying control techniques. It reduces the structural loads both on the rotating and non‐rotating parts of the turbine. Classical individual blade pitch control strategies rely on single‐control loops with low bandwidth. The proposed approach makes it possible to use a higher bandwidth since it accounts for coupling at higher frequencies. A controller is designed for the utility‐scale 2.5 MW Liberty research turbine operated by the University of Minnesota. Stability and performance are verified using the high‐fidelity nonlinear simulation and baseline controllers that were directly obtained from the manufacturer. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Forfloating offshore wind turbines, rotors are under coupled motions of rotating and platform‐induced motions because of hydrodynamics impacts. Notably, the coupled motion of platform pitching and rotor rotating induces unsteadiness and nonlinear aerodynamics in turbine operations; thus having a strong effect on the rotor performances including thrust and power generation. The present work aims at developing a computational fluid dynamics model for simulations of rotor under floating platform induced motions. The rotor motion is realized using arbitrary mesh interface, and wind flows are modelled by incompressible Navier‐Stokes flow solver appended by the k  ? ω shear stress transport turbulence model to resolve turbulence quantities. In order to investigate the fully coupled motion of floating wind turbine, the six degree of freedom solid body motion solver is extended to couple with multiple motions, especially for the motion of rotor coupled with the prescribed surge‐heave‐pitch motion of floating platform. The detailed methodology of multiple motion coupling is also described and discussed in this work. Both steady and unsteady simulations of offshore floating wind turbine are considered in the present work. The steady aerodynamic simulation of offshore floating wind turbine is implemented by the multiple reference frames approach and for the transient simulation, the rotor motion is realized using arbitrary mesh interface. A rigorous benchmark of the present numerical model is performed by comparing to the reported literatures. The detailed elemental thrust and power comparisons of wind turbine are carried out by comparing with the results from FAST developed by National Renewable Energy Laboratory and various existing numerical data with good agreement. The proposed approach is then applied for simulations of National Renewable Energy Laboratory 5MW turbine in coupled platform motion at various wind speeds under a typical load case scenario. Transient effect of flows over turbines rotor is captured with good prediction of turbine performance as compared with existing data from FAST. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
T. Sebastian  M.A. Lackner 《风能》2013,16(3):339-352
Large‐scale offshore floating wind turbines were first proposed in 1972 by Prof. William E. Heronemus at the University of Massachusetts. Since then, very little progress has been made in the deployment of these systems despite the significant advantages afforded by floating wind turbines, namely access to superior wind resources and increased placement flexibility. Aside from the large capital costs associated with construction, one of the most significant challenges facing offshore floating wind turbines is a limited simulation and load estimation capability. Many wind turbine aerodynamic analysis methods rely on assumptions that may not be applicable to the highly dynamic environment in which floating wind turbines are expected to operate. This study characterizes the unique operating conditions that make aerodynamic analysis of offshore floating wind turbines a challenge. Conditions that may result in unsteady flow are identified, and a method to identify aerodynamically relevant platform modes is presented. Operating conditions that may result in a breakdown of the momentum balance equations are also identified for different platform configurations. It is shown that offshore floating wind turbines are subjected to significant aerodynamic unsteadiness fixed‐bottom offshore turbines. Aerodynamic analysis of offshore floating wind turbines may require the use of higher‐fidelity ‘engineering‐level’ models than commonly in use today. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Repair and replacement of offshore wind turbine blades are necessary for current and future offshore wind turbines. To date, repair activities are often conducted using huge jack‐up crane vessels and by applying a reverse installation procedure. Because of the high costs associated with installation and removal of offshore wind turbine components and the low profit margin of the offshore wind industry, alternative methods for installation and removal are needed. This paper introduces a novel concept for replacement or installation of offshore wind turbine blades. The concept involves a medium‐sized jack‐up crane vessel and a tower climbing mechanism. This mechanism provides a stable platform for clamping, lowering, and lifting of a blade. A case study of a 5‐MW offshore wind turbine is shown, where common engineering practices were applied and numerical simulations of the marine operations were carried out using finite element and multibody simulation tools. Operational limits for wave and wind actions were established to demonstrate the technical feasibility of the proposed concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号