首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 573 毫秒
1.
TiO2 films deposited by various coating techniques were investigated for self-cleaning applications. The optical coating layers of TiO2 films prepared from a sol–gel precursor were deposited on glass substrates using spin coating, dip coating and screen printing techniques. Effects of film deposition techniques on crystal structure, microstructure, thickness, photocatalytic activity, hydrophilicity and optical properties of the films were investigated using XRD, AFM, SEM, surface profilometer, UV–vis spectrophotometer and contact angle measurement. Dip coating the TiO2 optical film two and three times resulted in superhydrophilic surfaces. Increasing number of dipping times was found to increase the photocatalytic activity.  相似文献   

2.
Pulsed chemical vapor deposition (P-CVD) is a promising technology for the surface modification of TiO2 particles. For the scale-up application of P-CVD, a custom-designed rotary reactor and corresponding coating process at room temperature was developed in the present work. The obtained SiO2-coated TiO2 particles were characterized by various measures including high-resolution transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, etc. The results illustrated that the SiO2 films with a thickness of (3.7 ±0.7) nm were successfully deposited onto the surface of TiO2 particles. According to the dye degradation tests and acid solubility measurement, the deposited film can effectively inhibit the photocatalytic activity and enhance the weatherability of the TiO2 particles. Zeta potential measurements showed that the SiO2-coated TiO2 is possible to be stably dispersed in the pH range of 6.9–11.6. The coating process made the whiteness of TiO2 particles decreased slightly but still sufficient (97.3 ±0.1) for application. Furthermore, the properties of the TiO2 particles coated by P-CVD were compared with the particles coated by traditional wet chemical deposition. It is shown that the P-CVD can produce thinner but denser films with better photoactivity suppression performance. The developed coating process within the rotary reactor was proved practically feasible and convenient for the scale-up production of SiO2-coated TiO2 via P-CVD.  相似文献   

3.
In order to increase the photocatalytic activity on TiO2 thin film per its external surface area, the structure of flat thin film was modified by adding a small amount of polyethylene glycol (PEG) to TiO2 sol solution. By firing PEG contained in a TiO2 gel film, a porous structure was developed. The photocatalytic activities of the thin films prepared thus were evaluated by the degradation of 2-propanol in the aqueous solutions under black light illumination. The photocatalytic activity of TiO2 thin film prepared with added PEG 400 by 2.6 wt% or PEG 2000 by 9.5 wt% was increased by about 30% as compared to that prepared without added PEG.  相似文献   

4.
The coupled photocatalyst WO3/TiO2 is prepared by ball milling by doping WO3 into TiO2 and using H2O solution as disperser. The coupled photocatalyst WO3/TiO2 is characterized by UV–VIS diffuse reflection spectrum, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Transmission electron microscopy (TEM). The results show that the optimum percentage of WO3 doped is 3% and that the photocatalytic activity of the coupled WO3/TiO2 photocatalyst is much higher than that of TiO2 and WO3–TiO2 with no ball milling. Compared with TiO2, the photoexcited wavelength range of the WO3/TiO2 photocatalyst red-shifts about 50 nm, and the light absorption intensity is also improved. The crystal phase of TiO2 is not changed and new crystal phases are not found during the process of ball milling. WO3 and TiO2 coupled highly, forming the WO3/TiO2 photocatalyst. The increased photocatalytic activity of the coupled photocatalyst may be attributed to the enhance charge separation efficiency and the extend wavelength range of photoexcitation.  相似文献   

5.
Bimodal nanocrystalline mesoporous TiO2 powders with high photocatalytic activity were prepared by a hydrothermal method using tetrabutylorthotitanate (TiO(C4H9)4, TBOT) as precursor. The as-prepared TiO2 powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and N2 adsorption–desorption measurements. The photocatalytic activity of the as-prepared TiO2 powders was evaluated by the photocatalytic degradation of acetone (CH3COCH3) under UV-light irradiation at room temperature in air. The effects of hydrothermal temperature and time on the microstructures and photocatalytic activity of the TiO2 powders were investigated and discussed. It was found that hydrothermal treatment enhanced the phase transformation of the TiO2 powders from amorphous to anatase and crystallization of anatase. All TiO2 powders after hydrothermal treatment showed bimodal pore-size distributions in the mesoporous region: one was intra-aggregated pores with maximum pore diameters of ca. 4–8 nm and the other with inter-aggregated pores with maximum pore diameters of ca. 45–50 nm. With increasing hydrothermal temperature and time, the average crystallite size and average pore size increased, in contrast, the Brunauer-Emmett-Teller (BET) specific surface areas, pore volumes and porosity steadily decreased. An optimal hydrothermal condition (180 °C for 10 h) was determined. The photocatalytic activity of the prepared TiO2 powders under optimal hydrothermal conditions was more than three times higher than that of Degussa P25.  相似文献   

6.
王玉梅  冀海伟  常通  毕玉水 《化工进展》2020,39(5):1857-1865
为提升TiO2光催化活性克服其可见光响应能力差的问题,采用沉积-沉淀法制备了Au/TiO2复合物光催化剂,利用X射线衍射(XRD)、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-vis DRS)、荧光发射光谱等对样品进行了表征。XRD、FTIR和XPS结果表明,Au/TiO2中TiO2为锐钛矿相且Au成功沉积至TiO2。UV-vis DRS和荧光发射光谱结果表明,适量Au修饰不仅能提高TiO2对可见光的吸收,还可促进TiO2光生电子-空穴对分离,有利于增强其光催化活性。自由基捕获实验证实,形成?OH的数量与光照时间成正比且?OH生成量越多,光催化活性越高。对比考察了Au/TiO2和TiO2在氙灯光源照射下对大肠杆菌的光催化杀灭作用,并探讨了Au负载量、光照时间、光照强度、光催化剂浓度等因素对灭菌性能的影响。结果表明:Au/TiO2的光催化灭菌活性优于TiO2,且与光照时间和光照强度均成正比;Au的适宜负载量为3%(质量分数);3%Au/TiO2在光照时间60min、光照强度7mW/cm2、光催化剂浓度100μg/mL的条件下,对大肠杆菌的杀灭效率高达91.3%。  相似文献   

7.
N-doped TiO2 nanoparticle photocatalysts were prepared through a sol-gel procedure using NH4C1 as the nitrogen source and followed by calcination at certain temperature. Systematic studies for the preparation parameters and their impact on the structure and photocatalytic activity under ultraviolet (UV) and visible light irra-diation were carried out. Multiple techniques (XRD, TEM, DRIF, DSC, and XPS) were commanded to characterize the crystal structures and chemical binding of N-doped TiO2. Its photocatalytic activity was examined by the deg- radation of organic compounds. The catalytic activity of the prepared N-doped TiO2 nanoparticles under visible light (λ〉400nm) irradiation is evidenced by the decomposition of 4-chlorophenol, showing that nitrogen atoms in the N-doped TiO2 nanoparticle catalyst are responsible for the visible light catalytic activity. The N-doped TiO2 nanoparticle catalyst prepared with this modified route exhibits higher catalytic activity under UV irradiation in contrast to TiO2 without N-doping. It is suggested that the doped nitrogen here is located at the interstitial site of TiO2 lattice.  相似文献   

8.
Regard to the poor adsorbability of the fixing film photocatalyst, we prepared a new nanosized TiO2 thin film modified by carbon black acting as the pore-forming agent and baked by a kind of new method. The film was characterized by XRD, TEM, SEM, DRS and FT-IR techniques. The results showed that the prepared TiO2 films were mainly anatase structure, containing a little rutile. Their mean sizes of crystal grains are about 20–30 nm. Comparing to the ordinary TiO2 film, we found that both carbon black modification and new baking method could make the characteristics of films change, such as more pores, looser structure, smaller crystal grains and longer excitation wavelength. It should be owed to these advantaged characteristics that the photocatalytic activity of the new film was largely improved during the degradation of benzamide. Furthermore, it also had wonderful stability, keeping its activity for 4 months applied to degrade reactive brilliant red X-3B in the continuous flow reactor.  相似文献   

9.
When TiO2 is immobilized on organic fibres, pumice stone or polymer film, the photocatalytic efficiency decreases slowly during long-term use. The efficiency of immobilized photocatalysts were tested on 500 ml of a 5×10−5 M solution of acid orange-7 (a classical azo dye) before and after treatment of 10−3 M solution of acid orange-7 during 4 weeks. It was observed that the efficiency was reduced approximately four, five and 10 times with polymer film containing TiO2, TiO2 on organic fibres and TiO2 on pumice stone, respectively, after 4 weeks of use. Volumes treated were 40, 45 and 60 l, respectively. Nevertheless, the decomposition rate stays a little higher with TiO2 on pumice stone than with the two other catalysts tested. The photocatalytic activity of immobilized TiO2 was significantly reduced also during treated with wastewaters. For immobilized photocatalysts used, the decrease of activity is considered to be caused by the elimination of some particles from the catalyst surface during use and also by fouling of catalyst surface by the formation of by-products during the course of degradation process.  相似文献   

10.
The photocatalytic decomposition process on TiO2 thin films, was modeled by taking the decay of illumination intensity via Lambert-Beer law into account. For the sake of experimental verification of the proposed model, Ti02 thin films were prepared on a glass substrate by a dip-coating method combined with a sol-gel process and the photocatalyuc activity of the thin films was evaluated by the decomposition of 2-propanol (IPA) in an aqueous solution under illumination of UV light source. The film thickness up to 1.4 μm increased with the withdrawal speed raised to the power 0.6 and was proportional to the number of application (i.e., repetition of dip-coating process). The TiO2 gel films prepared by a dip-coating technique, were subject to firing at 500°C. The photocatalytic decomposition rate could be expressed apparently as first-order with respect to IPA concentration. The observed relationship between apparent first-order rate constant of decomposition and the film thickness could satisfactorily be explained by the proposed model.  相似文献   

11.
The physicochemical properties, the photocatalytic activities in aqueous solution and the adhesion properties of supported TiO2 films prepared by different sol–gel methods have been studied. The thickness, the TiO2 loading and the photocatalytic activities are influenced by the nature of the stabilising agent. By contrast, the nature of the organic titanium precursor, as well as the solvent and the absence of stabilising agents are determining for the resulting photocatalytic activities. Titania-sol generated by non-controlled hydrolysis of titanium isopropoxide was used to determine the influence (i) of number of coating, (ii) of the calcination temperature and (iii) of the nature of support on the photocatalytic activity under direct and backside irradiation. The higher the coating number, the thicker the TiO2-film and the higher the photocatalytic efficiency. the optimum calcination temperature was found to be 400 °C. Migration of cationic species into TiO2-films and the decrease of thickness at higher temperatures lead to the decline of activity.  相似文献   

12.
Gold loaded on TiO2 (Au/TiO2) catalysts were prepared using Au(I)–thiosulfate complex (Au(S2O3)23−) as the gold precursor for the first time. The samples were characterized by UV–vis diffuse reflectance spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption flame emission spectroscopy (AAS), and X-ray photoelectron spectroscopy (XPS) methods. Using Au(S2O3)23− as gold precursor, ultra-fine gold nanoparticles with a highly disperse state can be successfully formed on the surface of TiO2. The diameter of Au nanoparticles increases from 1.8 to 3.0 nm with increasing the nominal Au loading from 1% to 8%. The photocatalytic activity of Au/TiO2 catalysts was evaluated from the analysis of the photodegradation of methyl orange (MO). With the similar Au loading, the catalysts prepared with Au(S2O3)23− precursor exhibit higher photocatalytic activity for methyl orange degradation when compared with the Au/TiO2 catalysts prepared with the methods of deposition–precipitation (DP) and impregnation (IMP). The preparation method has decisive influences on the morphology, size and number of Au nanoparticles loaded on the surface of TiO2 and further affects the photocatalytic activity of the obtained catalysts.  相似文献   

13.
Functionalized mesoporous TiO2 molecular sieves were prepared by treating ordered mesoporous TiO2 with phosphoric acid or ammonium sulfate at high temperature. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption–desorption measurement, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectrometer (FT-IR). The photocatalytic activity of the samples was evaluated by photocatalytic decomposition of bromomethane (CH3Br) in air. Results revealed that the functionalized TiO2 samples preserved ordered mesostructure and exhibited enhanced physicochemical properties. The photocatalytic activity of the functionalized mesoporous TiO2 sample was about three times higher than that of the pure mesoporous TiO2. The concentrations of phosphoric acid and ammonium sulfate solutions used for the functionalization of TiO2 greatly influenced the photocatalytic activity of the resultants materials. The optimal concentrations of phosphoric acid and ammonium sulfate solutions were 0.05 and 0.10 M, respectively. The enhanced photocatalytic performance of the functionalized mesoporous TiO2 could be attributed to large specific surface area, high hydroxyl density, and enhanced surface chemical state.  相似文献   

14.
李雅泊  郑玉婴  刘阳龙 《化工学报》2016,67(10):4493-4499
以TiF4为钛源、九水合硝酸铁为掺杂前体,采用水热法制备铁掺杂的TiO2空心微球。采用SEM、TEM、XRD、BET、XPS等技术对样品的形貌、结构、晶型、比表面积、元素组成等进行表征,以亚甲基蓝(MB)的光催化降解为目标反应,评价其光催化活性。结果表明,160℃下水热反应生成的纳米TiO2空心微球晶型为锐钛矿,少量掺铁并不影响微球的形貌及晶体结构。光催化实验表明,160℃下水热反应12 h生成的TiO2空心微球样品均匀性好、光催化活性最佳;铁掺杂能显著提高TiO2空心微球的催化活性,当铁钛比为1.5:100时,所得样品粒径最小,比表面积最大,光催化活性最高。  相似文献   

15.
TiO2 nanocrystalline particles dispersed in SiO2 have been prepared by the sol-gel method using titanium- and silicon-alkoxides as precursors. Nano-composite thin films were formed on the glass substrates by dip-coating technique and heat treated at temperatures up to 500 °C for 1 h. The size of the TiO2 nanocrystalline particles in the TiO2–SiO2 solution ranged from 5 to 8 nm. The crystalline structure of TiO2 powders was identified as the anatase phase. As the content of SiO2 increased, the anatase phase tended to be stabilized to higher temperature. TEM results revealed the presence of spherical TiO2 particles dispersed in a disk-shaped glassy matrix. Photocatalytic activity of the TiO2–SiO2 (1:1) thin films showed decomposition of 95% of methylene blue solution in 2 h and a contact angle of 10°. The photocatalytic decomposition of methylene blue increased and the contact angle decreased with the content of TiO2 phase. TiO2–SiO2 with the molar ratio of 1:1 showed a reasonable combination of adhesion, film strength, and the photocatalytic activity.  相似文献   

16.
The high performance photocatalytic TiO2 films were successfully obtained by a galvanostatic anodization of metallic titanium using the optimum anodization condition, subsequent to pre-nitridation treatment. The optimized anodization parameters on the formation of high photocatalytic TiO2 film were investigated. The pre-nitridation treatment was performed by annealing metallic Ti under a nitrogen atmosphere of 0.1 MPa. The anodized TiO2 film showed the high photocatalytic activities to decompose not only gaseous acetaldehyde but also tetrachloroethylene, which revealed that the anodized TiO2 film is a possible candidate of the photocatalyst for environmental purifications comparable to the best photocatalyst of fine crystalline powder.  相似文献   

17.
通过溶胶凝胶法,经多次涂覆在SBA-15上负载掺杂镍的纳米TiO2,得到SBA-15/NiO/TiO2复合物;再以TiO2中还原态金属镍为催化剂,通过化学气相沉积法(CVD),在SBA-15/NiO/TiO2表面原位生长碳纳米管,制得SBA-15/Ni/TiO2/CNTs复合材料。通过XRD、SEM、TEM、UV-Vis和Raman等方法考察了SBA-15/Ni/TiO2/CNTs复合材料的结构和性能,并通过降解亚甲基蓝溶液评价其光催化活性。结果表明,SBA-15/Ni/TiO2/CNTs复合光催化剂的催化活性较SBA-15/NiO/TiO2显著提高。 二次涂覆掺杂镍的二氧化钛制得的复合光催化剂的催化活性高于一次涂覆。  相似文献   

18.
TiO2 coatings of different thickness were prepared by a thermal spray process. It was found that the external bias applied to the as-sprayed TiO2 coating could significantly improve its photocatalytic performance, which was characterized by decomposition of methylene blue (MB) solution. The decomposition efficiency increased with increasing external bias voltage. However, for voltage greater than 15 V, the decomposition efficiency remained constant. The TiO2 coating with a thickness of 6 μm showed the best photocatalytic performance under an external bias voltage of 15 V.  相似文献   

19.
Structures and photocatalytic performance of N-doped TiO2 modified by platinum chloride (PtClx/N-TiO2) was investigated. It was found that the PtClx/N-TiO2 forms anatase structure of TiO2 involving nitrogen, chloride species and platinum ions (+IV) as major species, and it exhibits higher photocatalytic activity than either N-TiO2 or PtClx/TiO2 for the decomposition of acetic acid or acetaldehyde in aqueous solutions under visible light irradiation (λ > 420 nm). An enhancement of the photocatalytic activity on PtClx/N-TiO2 has been proposed as a Z-scheme mechanism for charge separation between platinum chloride and N-TiO2.  相似文献   

20.
武佳  徐浩  延卫 《化工进展》2016,35(Z1):188-194
TiO2纳米管阵列作为一种新型的三维立体纳米材料,因其大的比表面积及特殊的几何结构而受到了广泛的关注与研究。本文回顾了近年来阳极氧化法在Ti基底上原位生成TiO2纳米管阵列所用电解液的发展趋势,介绍了TiO2纳米管阵列的特性,如晶型结构、光学和电学特性以及催化活性,阐述了TiO2纳米管阵列的金属离子掺杂、非金属离子掺杂、金属沉积、导电聚合物复合、半导体复合以及其他等多种改性手段,探讨了TiO2纳米管阵列在光电催化降解污染物、光解水制氢、染料敏化太阳能电池和传感器以及其他多个领域的应用研究进展。最后,展望了TiO2纳米管阵列的主要研究方向是对其形貌调控与表面改性等方面作进一步研究,以期为后续研究提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号