首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The microstructure and mechanical properties of an alumina-silica ceramic fiber after thermal exposure at 1100–1300°C were investigated by X-ray diffraction, nuclear magnetic resonance, scanning electron microscopy, transmission electron microscopy analyses and room temperature tensile strength test. The results showed that the fiber was composed of γ-A12O3 and amorphous SiO2. A phase reaction of γ-A12O3 and amorphous SiO2 occurred when thermal exposure temperature exceeded 1150°C, and a new mullite phase formed. The grain size of the newly formed mullite increased with the increase of exposure temperature. Both the phase transition and grain growth of mullite had a significant impact on the mechanical properties of the fiber. Tensile strength of the fiber decreased slightly when thermal exposure temperature was below 1150°C, while the strength retention of the fiber decreased sharply to 65.36% as exposure temperature rose to 1200°C. A higher dispersion of tensile strength was also observed at higher exposure temperatures, as revealed by the Weibull statistical model.  相似文献   

2.
The effects of heat treatments in air and in an HCl gas atmosphere on the strength of Nextel 720 fibers were investigated. These fibers were polycrystalline oxide fibers containing two phases: mullite and alumina. The fibers were heat treated in air and in HCl at 1200° and 1300°C for 1 h to simulate possible processing conditions for all-oxide ceramic fiber composites. These fibers were tested as bundles containing approximately 400 fibers, as supplied by the manufacturer. Tests with fibers in the as-received condition were also conducted for comparison. The as-received fibers had a bundle strength of approximately 1 GPa. Most of the fiber heat treatments appear to cause modest reductions in the average strength, although there was scatter in the results. Fibers heat treated in HCl at 1300°C did not appear to show a statistically significant reduction in strength, and suggest the suitability of this process for strengthening an all-oxide ceramic fiber composite. Examination of the fracture surfaces indicated that weld lines (at locations where the fibers were touching when the fibers were made) were the source of the critical flaws that caused fiber fracture. The possible effects of the heat treatments on the weld lines and the bundle strengths were discussed.  相似文献   

3.
Scheelite coating was deposited on SiC fiber tows from various liquid-phase precursors followed by heat treatments between 900 °C and 1100 °C in different atmospheres. The tensile strength was fully retained for the coated fibers treated at 900 °C in vacuum. Subsequent heat treatment at 1100 °C in Ar had little effect on the fiber strength, which is explained by the excepted good thermal stability between the scheelite coating and SiC fiber. However, larger strength degradation and poor spool ability of coated fibers prepared in Ar/air were found. Assisted oxidation of SiC fiber by calcium salts is suggested to be responsible for the much larger strength degradation of fibers prepared in Ar/air.  相似文献   

4.
Monazite was continuously coated onto Nextel 720 fibers, using an aqueous precursor and in-line heat treatment at 900°–1300°C. Some experiments were repeated with alumina-doped precursors. Coated fibers were heat-treated for 100 h at 1200°C. Coatings were characterized by optical microscopy, scanning electron microscopy, and analytical transmission electron microscopy. Coated-fiber tensile strengths were measured by single-filament tensile tests. The precursors were characterized by X-ray diffractometry, differential thermal analysis/thermogravimetric analysis, and mass spectrometry. Coated-fiber tensile strength was lower for fibers coated at higher deposition temperatures. Heat treatment for 100 h at 1200°C decreased tensile strength further. The coatings were slightly phosphate-rich and enhanced alumina grain growth at the fiber surface, but phosphorus was not detected along the alumina grain boundaries. Fibers with alumina-doped coatings had higher tensile strengths than those with undoped coatings after heat treatment for 100 h at 1200°C. Alumina added as α-alumina particles gave higher strengths than alumina added as colloidal boehmite. Alumina doping slowed monazite grain growth and formed rough fiber–coating interfaces after 100 h of heat treatment at 1200°C. Possible relationships among precursor characteristics, coating and fiber microstructure development, and strength-degradation mechanisms are discussed in this paper.  相似文献   

5.
The thermal stability of alumino-silicate fibre (Nextel 720)/porous mullite matrix composites was investigated in the temperature range between 1300 and 1600°C. In the as-prepared state the fibres consist of mullite plus α-Al2O3, while the porous mullite matrix includes minor amounts of a SiO2-rich glass phase. Temperature-controlled reactions between the silica-rich glass phase of the matrix and α-Al2O3 at the rims of the fibres to form mullite have been observed. At the end of this process, virtually all glass phase of the matrix is consumed. Simultaneously, alumina-free layers about 1 μm thick are formed at the periphery of the fibres. The mullite forming process is initiated above about 1500°C under short time heat-treatment conditions (2 h) and at much lower temperature (1300°C) under long-term annealing (1000 h). Subsequent to annealing below the thermal threshold, the composite is damage tolerant and only minor strength degradation occurs. Higher annealing temperatures, however, drastically reduce damage tolerance of the composites, caused by reaction-induced gradually increasing fibre/matrix bonding. According to this study, the thermal stability of alumino silicate (Nextel 720) fibre/mullite matrix composites ranges between 1500°C in short-term and 1300°C in long-term heat-treatment conditions.  相似文献   

6.
The thermal degradation behavior of single-layer BN and of double-layer BN/SiC chemically vapor-deposited fiber coatings in mullite-fiber-reinforced mullite composites was investigated by means of transmission electron microscopy after processing and heat treatment of the composites at 1000°, 1200°, and 1300°C for 6 h in air. The single-layer BN coatings were ˜0.7 mu m thick and consisted of turbostratic BN with (0001) basal planes lying parallel to the surfaces of the fibers plus nanosized areas that had no preferential orientation. This microstructure remained unchanged up to 1000°C; however, distinct coarsening of the randomly oriented BN crystallites occurred in the temperature range of 1000°-1200°C. The single-layer BN coatings were stable against oxidation, up to 1200°C. At higher temperatures, degradation of the coatings via oxidation occurred. Double-layer BN/SiC coating systems consisted of BN that was 0.08 mu m thick and SiC layers that were 0.16 mu m thick and deposited onto the mullite fibers. The turbostratic BN was highly anisotropic and did not undergo any microstructural change, up to 1300°C. The outer SiC layer of the double-layer coating system improved the oxidation resistance of BN in the 1200°-1300°C temperature range, despite a partial oxidation of SiC to SiO2.  相似文献   

7.
Near-stoichiometric mullite (3Al2O32SiO2) that contained small amounts of calcium and magnesium was exposed to pure dry hydrogen gas at elevated temperatures. Exposure temperatures were 1050° and 1250°C, and exposure times were up to 500 h. Preferential attack of the aluminosilicate glass that was present in the grain boundaries of the mullite occurred after 125 h at 1250°C. Hydrogen scrubbing of the silica from the glassy grain boundaries and the mullite grains yielded a porous alumina-rich surface. The room-temperature strength increased after short exposure times at 1250°C (up to 125 h) and then decreased by 53% after exposure for 500 h. At 1050°C, all exposure times (25-500 h) decreased the strength. The room-temperature strength of mullite decreased 22% after 500 h in hydrogen at 1050°C. We also observed a rapid 25% strength loss after short exposure times at 1050°C, which was attributed to the calcium/hydrogen-assisted crystallization of the glassy grain-boundary phase.  相似文献   

8.
A mullite matrix containing homogeneously distributed ultra-fine (70–350 nm) pores was reinforced with NdPO4-coated woven mullite fibre mats (Nextel™ 720) leading to damage-tolerant composites with good high temperature (1300 °C) strength and thermal cycling resistance. Electrophoretically deposited fibre preforms were placed in a high-load pressure filtration assembly, leading to formation of consolidated compacts with high green densities. After sintering at 1200 °C for 3 h, the compacts had a density of 86.4% of theoretical density and showed damage-tolerant behaviour up to 1300 °C, with flexural strength values of 235 MPa and 224 MPa at room temperature and 1300 °C, respectively. No significant microstructural damage was detected after thermal cycling the samples between room temperature and 1150 °C for up to 300 cycles. The thermomechanical test results combined with detailed electron microscopy observations indicate that the overall composite behaviour in terms of damage-tolerance, thermal capability and thermal cycling resistance is mainly controlled by two microstructural features: (1) the presence of a dense NdPO4 interphase but weak bonding with the matrix or fibre and (2) the presence of homogeneously distributed nano pores (<350 nm) within the mullite matrix.  相似文献   

9.
Fugitive Interfacial Carbon Coatings for Oxide/Oxide Composites   总被引:1,自引:0,他引:1  
The effectiveness of fugitive interfacial carbon coatings in Nextel™ 720-based composites was investigated. Dense (>90%) matrix (calcium aluminosilicate, 0° and ±45°) composites and porous matrix (mullite/alumina, eight-harness satin fabric) composites were fabricated and tensile tested in two control conditions (uncoated or carbon-coated) and with the carbon removed (fugitive interface). Results indicated that carbon removal in dense matrix composites did not significantly change unidirectional composite strength, even after long-term exposure at 1000°C. For porous matrix composites, composite strength was independent of the fiber/matrix interface, even after exposure at 1150°C for 500 h in air.  相似文献   

10.
Nextel? 610 alumina fiber tows were heat‐treated at 1100°C–1500°C for 1 to 100 h in air. Tensile strengths and Weibull moduli were measured for 30 filaments after each heat‐treatment. 3‐D grain size and orientation distributions were described using oblate ellipsoids. The number of grains in a 1 inch gauge length and grains with the largest major and minor ellipsoid‐axes were determined from these distributions. The grain with the largest KEFF for mixed‐mode fracture was also determined, using the maximum energy release rate criteria from grain‐size and orientation distributions. Grain‐size dependence of tensile strength and Weibull modulus was evaluated. Strength had no obvious dependence on grain size for fibers with average major‐axes smaller than 0.25 μm. For fibers with larger grains, grain‐size dependence may involve flaws originating from clumps of grains, rather than a single grain. Possible relationships between strength and grain‐size and other causes of strength degradation after heat‐treatment are discussed.  相似文献   

11.
《Ceramics International》2021,47(23):33252-33258
The effect of thermal exposure on a mullite fiber was analyzed. This type of mullite fiber, consisting of γ-Al2O3 and amorphous SiO2, was developed for high-temperature applications. Heat treatments at temperatures ranging from 900 °C to 1500 °C for 1h were performed in air. Investigations showed that the tensile strength of the initial fiber was about 1.60 GPa. And the elastic modulus was about 133.51 GPa. The bundles’ strength decreased at 900 °C slightly after thermal treatment, then increased and got a maximum at 1100 °C with 1.65 GPa. At above 1100 °C, the strength degraded sharply due to the mullite phase transformation and the exaggerated grain growth. At 1300 °C, the phase reaction almost finished with a tensile strength of 0.86 GPa. And the strength retention was only 47.50%. When the heat-treated temperature got to 1500 °C, the density of surface defects in the fiber surged, making it too fragile and weak to go through the tensile tests.  相似文献   

12.
To overcome the main limitation of oxide ceramic matrix composites (Ox-CMCs) regarding thermal degradation, the use of matrix doping is analyzed. Minicomposites containing Nextel 610 fibers and alumina matrices with and without MgO doping were produced. The thermal stability of the minicomposites was evaluated considering their microstructure and mechanical behavior before and after thermal exposures to 1300 °C and 1400 °C for 2 h. Before heat treatment, both composite types showed very similar microstructure and tensile strength. After heat treatment, densification, grain growth and strength loss are observed. Furthermore, the MgO dopant from the matrix diffuses into the fibers. As a result, abnormal fiber grain growth is partially suppressed and MgO-doped composites show smaller fiber grains than non-doped composites. This more refined microstructure leads to higher strength retention after the heat treatments. In summary, doping the matrix can increase the overall thermal stability without impairing the room-temperature properties of Ox-CMCs.  相似文献   

13.
In this paper, the effect of phase transformation on microstructure evolution and mechanical behaviors of mullite fibers was well investigated from 1100 to 1300°C. In such a narrow temperature range, the microstructure and mechanical properties showed great changes, which were significant to be studied. The temperature of the alumina phase transformation started at below 1100°C. The main phases in fibers were γ-Al2O3 and δ-Al2O3 with amorphous SiO2 at 1150°C. The stable α-Al2O3 formed at 1200°C. Then the mullite phase reaction occurred. As the alumina phase reaction took place, the tensile strength increased with the increasing temperature. In particular, the filaments achieved the highest strength at 1150°C with 1.98 ± 0.17 GPa, and the Young's modulus was 163.08 ± 4.69 GPa, showing excellent mechanical performance. After 1200°C, the mullite phase reaction went on with the crystallization of orthorhombic mullite. The density of surface defects increased rapidly due to thermal grooving, which led to mechanical properties degrade sharply. The strength at 1200°C was 1.01 ± 0.15 GPa with a strength retention of 63.13%, and the Young's modulus was 184.14 ± 10.36 GPa. While at 1300°C, the tensile strength was 0.64 ± 0.14 GPa with a strength retention of only 40.00%.  相似文献   

14.
Oxide-based ceramic matrix composites with a highly porous mullite matrix and Nextel™ 720 alumino silicate fibers have been fabricated by infiltrating filaments with a mullite precursor slurry, and by subsequent one-dimensional (1D) and two-dimensional (2D)-winding up the fiber bundles on mandrels. The green bodies were pressureless sintered in air at 1300°C. These composites which require no fiber/matrix interface are characterized by favorable damage tolerance and bending strengths of 160 MPa at room temperature and up to temperatures of 1200°C. These properties make it an excellent low-cost choice for combustion chamber liners, diffusor rings and other thermal protection systems for high temperature applications in oxidizing environment.  相似文献   

15.
The rate of composite formation via reactive metal penetration has been determined. The metal penetration depth (i.e., the reaction-layer thickness) was measured from cross sections of partially reacted samples. Samples were fabricated by immersing dense mullite preforms in a bath of molten aluminum at temperatures of 900°–1300°C and reacting the combination for up to 250 min. In general, the reaction-layer thickness increased linearly as the time increased. Penetration rates as high as 6.0 mm/h were measured; however, the aluminum penetration rate varied dramatically with time and temperature. The penetration rate increased when the reaction temperature was increased from 900°C to 1100°C, and the reaction-layer thickness increased linearly as the time increased in this temperature range. At temperatures of 1150°C and above, reaction-layer formation slowed or stopped after a relatively short period of rapid linear growth, because of an increase in silicon concentration near the reaction interface. The duration of the rapid linear growth period decreased from 25 min at 1150°C to <1 min at 1250°C. At temperatures of 1300°C and above, no reaction layer was detected by using optical microscopy. Kinetics data and transmission electron microscopy analysis suggest that the reaction was inhibited at higher reaction temperatures and longer times, because of silicon buildup and saturation at the reaction front. Calculations show that, as the reaction temperature increased, the silicon production increased faster than the silicon transport. The two rates were approximately equal at a temperature of 1100°C.  相似文献   

16.
Yttria-doped tetragonal ZrO2 polycrystal (Y-TZP)lmullite composites were sintered at 1450° to 1500°C in air to disperse rodlike mullite grains at the grain boundary of Y-TZP and the mechanical and thermal properties were investigated. The aspect ratios of mullite grain were >2. High fracture strength of 1000 MPa and fracture toughness of 12 MPa·m1/2 were obtained by dispersing <20 vol% of mullite into Y-TZP. The thermal expansion coefficient of Y-TZP/mullite composites decreased with increasing mullite content. The thermal shock resistance of Y-TZP was greatly improved by dispersion of rodlike mullite grains.  相似文献   

17.
A process to manufacture porous oxide matrix/polycrystalline oxide fiber composites was developed and evaluated. The method uses infiltration of fiber cloths with an aqueous slurry of mullite/alumina powders to make prepregs. By careful manipulation of the interparticle pair potential in the slurry, a consolidated slurry with a high particle density is produced with a sufficiently low viscosity to allow efficient infiltration of the fiber tows. Vibration-assisted infiltration of stacked, cloth prepregs in combination with a simple vacuum bag technique produced composites with homogeneous microstructures. The method has the additional advantage of allowing complex shapes to be made. Subsequent infiltration of the powder mixture with an alumina precursor was made to strengthen the matrix. The porous matrix, without fibers, possessed good thermal stability and showed linear shrinkage of 0.9% on heat treatment at 1200°C. Mechanical properties were evaluated in flexural testing in a manner that precluded interlaminar shear failure before failure via the tensile stresses. It was shown that the composite produced by this method was comparable to porous oxide matrix composites manufactured by other processes using the same fibers (N610 and N720). The ratio of notch strength to unnotch strength for a crack to width ratio of 0.5 was 0.7–0.9, indicating moderate notch sensitivity. Interlaminar shear strength, which is dominated by matrix strength, changed from 7 to 12 MPa for matrix porosity ranging from 38% to 43%, respectively. The porous microstructure did not change after aging at 1200°C for 100 h. Heat treatment at 1300°C for 100 h reduced the strength for the N610 and N720 composites by 35% and 20%, respectively, and increased their brittle nature.  相似文献   

18.
Mullite (3Al2O3·2SiO2) of stoichiometric composition was prepared by mixing boehmite sol and silica dispersion and gelling at a pH of 3. Complete mullitization takes place at or above 1300°C. Ultrafine mullite powder prepared by calcining gel at 1400°C and attrition milling could be sintered to >98% (theoretical density) at 1650°C for 1.5 h. The flexural strength of the sintered body at room temperature was 405 MPa and 350 MPa at 1300°C. Only traces of a secondary phase were observed along the grain boundary.  相似文献   

19.
A processing method using evaporation/condensation sintering in an HCl atmosphere was developed for strengthening porous materials without shrinkage. Strengthening without shrinkage is useful in preventing voids and cracks that might be formed during constrained densification, e.g., a porous matrix in a continuous fiber reinforced ceramic composite. Mixtures of mullite and zirconia (monoclinic, tetragonal (3 mol% Y2O3), and cubic (8 mol% Y2O3)) were studied and exposed to HCl vapor at temperatures up to 1300°C. It was observed that the evaporation–condensation mass transport process produced a porous material with minimal shrinkage. As the crystal structure of the starting tetragonal and cubic zirconia powders did not change after extensive coarsening, it appeared that zirconium and yttrium were transported in the same proportion via evaporation/condensation. The process produced significant coarsening of the zirconia grains, which made the material resistant to densification when heated to 1200°C in air. Because the sintering produced coarsening without shrinkage, the pores also coarsened and a porous microstructure was retained. Mixtures of mullite and zirconia were used because mullite does not densify under the processing conditions used here, namely, heat treatments up to 1300°C. The mullite particles acted as a non-densifying second phase to further inhibit shrinkage when the mullite/zirconia composite was heated up to 1200°C in air. The coarsened cubic zirconia plus mullite mixture had the least densification after heat treatments in air of 100 h at 1200°C.  相似文献   

20.
Grain growth kinetics of mullite in laboratory-produced and commercial (3M-Nextel 720) alumino silicate fibers was analyzed in the temperature range between 1500° and 1700°C. The lab fibers consist of mullite plus traces of α-alumina, while the phase content of the commercial Nextel 720 fibers is about 60 wt% mullite plus 40 wt%α-alumina. The temperature-induced grain coarsening of mullite follows the empirical law D 1/ n − D 01/ n = kt . Two different temperature regimes can be distinguished with respect to the grain growth exponents: above 1600°C the growth exponent is ≈1/3, while below 1600°C the growth exponent of ≈1/12 is exceptionally low. Laboratory-produced and commercial fibers show almost identical mullite grain growth kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号