首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
行人再识别技术综述   总被引:20,自引:7,他引:13       下载免费PDF全文
李幼蛟  卓力  张菁  李嘉锋  张辉 《自动化学报》2018,44(9):1554-1568
行人再识别指的是判断不同摄像头下出现的行人是否属于同一行人, 可以看作是图像检索的子问题, 可以广泛应用于智能视频监控、安保、刑侦等领域.由于行人图像的分辨率变化大、拍摄角度不统一、光照条件差、环境变化大、行人姿态不断变化等原因, 使得行人再识别成为目前计算机视觉领域一个既具有研究价值又极具挑战性的研究热点和难点问题.早期的行人再识别方法大多基于人工设计特征, 在小规模数据集上开展研究.近年来, 大规模行人再识别数据集不断推出, 以及深度学习技术的迅猛发展, 为行人再识别技术的发展带来了新的契机.本文对行人再识别的发展历史、研究现状以及典型方法进行梳理和总结.首先阐述了行人再识别的基本研究框架, 然后分别针对行人再识别的两个关键技术(特征表达和相似性度量), 进行了归纳总结, 重点介绍了目前发展迅猛的深度学习技术在行人再识别中的应用.另外, 本文对行人再识别中代表性的数据集以及在各个数据集上可以取得优异性能的方法进行了分析和比较.最后对行人再识别技术的未来发展趋势进行了展望.  相似文献   

2.
行人再识别(Re-id)作为智能视频监控技术之一,其目的 是在不同的摄像机视图中检索出指定身份的行人,因此该项技术对维护社会治安稳定具有重大研究意义.针对传统的手工特征方法难以应对行人Re-id任务中复杂的摄像机环境的问题,大量基于深度学习的行人Re-id方法被提出,极大地推动了行人Re-id技术的发展.为了深入了解基...  相似文献   

3.
同构行人再识别技术研究基于可见光图像的行人检索问题,但无法完全应对复杂多变真实场景,大量研究工作开始探索基于可见光图像与其它异构数据之间的行人检索问题,即跨模态异构行人再识别.该研究相比同构行人再识别,更具挑战性.文中首先简述跨模态异构行人再识别的概念及与一般行人再识别的区别,再针对文本与图像、图像与视频、跨分辨率图像、红外图像与可见光图像、深度图与可见光图像、素描与可见光图像这6类场景,归纳整理和分析跨模态异构行人再识别的代表性工作、常用数据集及一些算法的性能表现.最后,总结目前整体研究进展,展望未来发展趋势.  相似文献   

4.
行人再识别(Re-id)作为智能视频监控技术之一,其目的是在不同的摄像机视图中检索出指定身份的行人,因此该项技术对维护社会治安稳定具有重大研究意义。针对传统的手工特征方法难以应对行人Re-id任务中复杂的摄像机环境的问题,大量基于深度学习的行人Re-id方法被提出,极大地推动了行人Re-id技术的发展。为了深入了解基于深度学习的行人Re-id技术,整理和分析了大量相关文献,首先从图像、视频、跨模态这3个方面展开综述性介绍,将图像行人Re-id技术分为有监督和无监督两大类并分别进行概括;然后列举了部分相关数据集,并对近年来在图像和视频数据集上的一些算法进行性能的比较与分析;最后总结了行人Re-id技术的发展难点,并深入讨论了该技术未来可能的研究方向。  相似文献   

5.
随着计算机视觉技术的不断发展,行人再识别技术在安防、侦查和智能监控等领域发挥了巨大的作用,成为了当下的研究热点.传统的行人再识别技术聚焦于摄像机采集到的可见光图像这一视觉信息的研究,并且在实验室条件下已经达到了较好的效果,但在光照情况差、目标遮挡、画质模糊等不利条件下,算法的识别率出现了断崖式的下降.如今视觉信息不单单...  相似文献   

6.
行人再识别(person re-identification,ReID)旨在解决跨摄像头跨场景下目标行人的关联与匹配,作为智能视频监控系统的关键环节,对维护社会公共秩序具有重大作用.为了深入了解行人再识别研究现状和加速推进国内行人再识别相关研究及技术落地,本文对该领域国家自然科学基金申报数量、资助力度以及地理分布情况进...  相似文献   

7.
行人再识别技术是计算机视觉领域中一个具有挑战性的任务。该任务针对个体的外观变化模式展开研究,特征变化剧烈,存在小样本问题,而通过提出的一种基于迁移学习的度量学习模型,可约束不同数据集样本分布的差异,实现度量模型在不同数据集上的迁移。该算法不仅增强了度量模型训练样本的多样性,提高了分辨能力,同时提升了样本的适应性。最后,通过在iLIDS数据集进行度量模型的预训练,并在VIPeR和CUHK01两个数据集上进行的迁移学习,验证了算法的有效性和准确性。  相似文献   

8.
行人再识别通过大时空范围内跨摄像机目标行人图像的检索与匹配,可实现人脸等生物特征失效情况下的行人关联,已成为智能视频监控系统的关键环节和支撑技术,并在智慧公安、智慧城市等国民经济建设中发挥了重要作用。近年行人再识别技术吸引了越来越多的关注,并取得了快速发展与进步。本文在对行人再识别技术进行简介的基础上,面向行人再识别的技术发展和落地应用需求与挑战,总结分析遮挡行人再识别、无监督行人再识别、虚拟数据生成、域泛化行人再识别、换装行人再识别、跨模态行人再识别和行人搜索等热点方向的前沿进展,归纳其发展现状和存在问题,最后对行人再识别技术的发展趋势进行展望。希望通过总结和分析,能够为研究人员开展行人再识别相关研究、推动行人再识别技术进步提供参考。  相似文献   

9.
摄像机拍摄同一个行人受到光照、行为姿态等因素的影响,导致其外观出现明显的差别,为行人再识别研究带来一定的挑战.依托深度及度量学习提出行人再识别方法.基于深度学习对图像进行去雾处理,通过局部最大特征及距离度量学习完成特征提取以及距离计算.根据实验发现,所使用的行人再识别算法非常有效,具有较高的识别率和匹配率.  相似文献   

10.
行人再识别问题是目前在大型的智能化监控系统中常用的核心技术,通常应用于在智能化监控系统中搜寻与查找某些特定的目标人群,伴随着近些年来信息化技术、计算机视觉应用、深度学习等先进技术的深入发展,行人再识别问题已经逐渐从传统的模式朝着深度学习的方向继续探索式前进.基于此,本文从行人再识别问题研究的现状情况作为切入口,分析探究...  相似文献   

11.
    
Person re-identification (re-ID) has drawn attention significantly in the computer vision society due to its application and research significance. It aims to retrieve a person of interest across different camera views. However, there are still several factors that hinder the applications of person re-ID. In fact, most common data sets either assume that pedestrians do not change their clothing across different camera views or are taken under constrained environments. Those constraints simplify the person re-ID task and contribute to early development of person re-ID, yet a person has a great possibility to change clothes in real life. To facilitate the research toward conquering those issues, this paper mainly introduces a new benchmark data set for person re-identification. To the best of our knowledge, this data set is currently the most diverse for person re-identification. It contains 107 persons with 9,738 images, captured in 15 indoor/outdoor scenes from September 2019 to December 2019, varying according to viewpoints, lighting, resolutions, human pose, seasons, backgrounds, and clothes especially. We hope that this benchmark data set will encourage further research on person re-identification with clothes variation. Moreover, we also perform extensive analyses on this data set using several state-of-the-art methods. Our dataset is available at https://github.com/nkicsl/NKUP-dataset .  相似文献   

12.
跨场景行人再识别方法的关键在于特征识别和度量模型的建立,而这两方面的问题都受到图像样本分布的局限,进而使得模型参数的估计出现过拟合现象。针对以上跨场景的行人再识别问题,提出了一种基于半监督的改进KISSME算法。该算法在KISSME学习算法的基础上,根据样本数据的正态分布特性进行重采样,并通过构建循环优化的学习方式弱化模型的拟合强度,增强度量模型的泛化能力,以此建立泛化后的度量模型。再通过联合KISSME度量,构建改进的半监督度量模型。最后,利用行人再识别通用公开数据集VIPe R对改进算法的有效性进行验证,并与SLDDL、RDC、ITML、PCCA、QARR-RSVM和KISSME等算法精度相比较,实验结果表明基于半监督的改进KISSME算法在不同排名下都有明显的优势,尤其在rank-1识别精度上,相较于现有的KISSME算法提升了3. 14%,充分验证了该算法的有效性。  相似文献   

13.
行人重识别是计算机视觉领域极具挑战的研究课题.近年来,伴随大规模行人数据集推出和深度学习发展,针对行人特征提取与描述、距离度量学习两大关键技术的研究取得众多成果.已有综述文献主要对特征提取与描述方法开展了归纳总结,尚缺乏对度量学习方法的全面分析.同时,鉴于度量学习在提升重识别性能中的关键作用,有必要对行人重识别中度量学...  相似文献   

14.
目的 人体目标再识别的任务是匹配不同摄像机在不同时间、地点拍摄的人体目标。受光照条件、背景、遮挡、视角和姿态等因素影响,不同摄相机下的同一目标表观差异较大。目前研究主要集中在特征表示和度量学习两方面。很多度量学习方法在人体目标再识别问题上了取得了较好的效果,但对于多样化的数据集,单一的全局度量很难适应差异化的特征。对此,有研究者提出了局部度量学习,但这些方法通常需要求解复杂的凸优化问题,计算繁琐。方法 利用局部度量学习思想,结合近几年提出的XQDA(cross-view quadratic discriminant analysis)和MLAPG(metric learning by accelerated proximal gradient)等全局度量学习方法,提出了一种整合全局和局部度量学习框架。利用高斯混合模型对训练样本进行聚类,在每个聚类内分别进行局部度量学习;同时在全部训练样本集上进行全局度量学习。对于测试样本,根据样本在高斯混合模型各个成分下的后验概率将局部和全局度量矩阵加权结合,作为衡量相似性的依据。特别地,对于MLAPG算法,利用样本在各个高斯成分下的后验概率,改进目标损失函数中不同样本的损失权重,进一步提高该方法的性能。结果 在VIPeR、PRID 450S和QMUL GRID数据集上的实验结果验证了提出的整合全局—局部度量学习方法的有效性。相比于XQDA和MLAPG等全局方法,在VIPeR数据集上的匹配准确率提高2.0%左右,在其他数据集上的性能也有不同程度的提高。另外,利用不同的特征表示对提出的方法进行实验验证,相比于全局方法,匹配准确率提高1.3%~3.4%左右。结论 有效地整合了全局和局部度量学习方法,既能对多种全局度量学习算法的性能做出改进,又能避免局部度量学习算法复杂的计算过程。实验结果表明,对于使用不同的特征表示,提出的整合全局—局部度量学习框架均可对全局度量学习方法做出改进。  相似文献   

15.
目的 针对当前行人再识别匹配块的显著性外观特征不一致的问题,提出一种对视角和背景变化具有较强鲁棒性的基于多向显著性相似度融合学习的行人再识别算法。方法 首先用流形排序估计目标的内在显著性,并融合类间显著性得到图像块的显著性;然后根据匹配块的4种显著性分布情况,通过多向显著性加权融合建立二者的视觉相似度,同时采用基于结构支持向量机排序的度量学习方法获得各方向显著性权重值,形成图像对之间全面的相似度度量。结果 在两个公共数据库进行再识别实验,本文算法较同类方法能获取更为全面的相似度度量,具有较高的行人再识别率,且不受背景变化的影响。对VIPeR数据库测试集大小为316对行人图像的再识别结果进行了定量统计,本文算法的第1识别率(排名第1的搜索结果即为待查询人的比率)为30%,第15识别率(排名前15的搜索结果中包含待查询人的比率)为72%,具有实际应用价值。结论 多方向显著性加权融合能对图像对的显著性分布进行较为全面的描述,进而得到较为全面的相似度度量。本文算法能够实现大场景非重叠多摄像机下的行人再识别,具有较高的识别力和识别精度,且对背景变化具有较强的鲁棒性。  相似文献   

16.
随着我国经济的快速发展,铁路运输在交通运输的地位愈为重要,在传统人工监管无力应对铁路司机安全监督的情况下,使用机器实现自动实时司机行为识别早已成为了一项极有意义的工作。为实现随车部署、实时进行铁路司机行为识别的目的,基于目标框检测算法实现目标检测和关键点检测的融合,搭建了一种可以同时检测司机人体关键点和手机的神经网络。经过网络运行输出人体姿态后,通过分析人体各关节角度和人体关键点与手机目标的位置关系等后处理对六类司机行为进行了分类识别,并通过TensorRT框架对模型进行了模型推理速度的加速和体积上的压缩。实验表明,该模型在嵌入式设备TX2上推理速度为25ms,可以达到较好检测效果下实时运行的目标。实现了实时进行铁路司机行为识别的目的。  相似文献   

17.
行人再识别指的是在无重叠视域多摄像机监控系统中, 匹配不同摄像机视域中的行人目标。由于行人图像受到光照、视角和行人姿态等变化的影响,在视觉上容易形成很大的外观差异,针对上述问题,提出了一种基于核空间与稠密水平条带特征的行人再识别算法。该算法首先通过自顶向下的滑动水平条带提取每个水平条带的颜色特征和纹理特征,然后融合行人图像的多种特征,映射到核空间,最后在核空间里学习得到一个对背景、视角、姿势的变化具有鲁棒性的相似度函数,通过比较相似度来对行人进行再识别。在VIPeR和iLIDS两个行人再识别数据集上的实验结果表明,本文算法具有较高的识别率,其中Rank1(排名第1的搜索结果即为待查询行人的比率)分别达到48.2%和60.8%。  相似文献   

18.
跨镜行人追踪是计算机视觉和视频监控公共安全体系构建等领域的重要课题.伴随大规模数据集的发展和深度学习网络的广泛研究,深度学习在跨镜行人追踪问题中取得了良好效果.然而在应用中,除了监控视频自身的不同摄像头、不同视角引起的不同视觉表象变化外,面向跨镜行人追踪的整体数据集偏小,具有标记的训练数据样本量更小,从而制约了基于深度...  相似文献   

19.
当前的行人再识别在度量学习上采用马氏距离相似度函数, 该相似度函数只与特征差分空间有关, 忽略了一对行人图像中每个个体的外观特征, 针对上述问题, 提出了通过学习一个双向关系相似度函数(Bidirectional Relationship Similarity Function, BRSF), 来计算一对行人图像的相似度. BRSF不但描述了一对行人图像的互相关关系, 而且关联了一对行人图像的自相关关系. 该文利用KISSME(Keep It Simple and Straightforward Metric)算法的思想进行相似度函数学习, 把一对样本特征的自相关关系和互相关关系用高斯分布来表示, 通过把最终高斯分布的比值转换为BRSF的形式, 得到一个对背景、视角、姿势的变化具有鲁棒性的相似度函数. 在VIPeR, QMUL GRID两个行人再识别数据集上的实验结果表明, 本文算法具有较高的识别率, 其中在VIPeR数据集上, Rank1达到了53.21%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号