首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The modified Hummer technique was used in the preparation of graphene oxide (GO) nanosheets, and then SiO2 decorated GO [GO(SiO2)] nanosheets were synthesized via the sol–gel method. Then, ultrahigh-molecular-weight polyethylene (UHMWPE) nanocomposites loaded with 0.5, 1, 1.5, and 2 wt % of GO(SiO2) were prepared using magnesium ethoxide/GO(SiO2)-supported Ziegler–Natta catalysts via the in situ polymerization. Morphological study of the prepared polymer powders was assessed using field-emission scanning electron microscopy, which showed that GO(SiO2) nanohybrids have been uniformly dispersed and distributed into the UHMWPE matrix. Also, the neat UHMWPE and its nanocomposites were evaluated with different analyses, including viscosity-average molecular weight measurement, differential scanning calorimetry, thermogravimetric analysis, tensile test, scratch hardness, and pin-on-disk test. The characterization of the UHMWPE nanocomposites indicated that many characterizations, including the mechanical, thermal, and tribological properties of UHMWPE, were significantly improved by incorporation of these new nanosheets in spite of the molecular weight reduction of the polymeric matrix and the improved flowability and processability of the produced nanocomposite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47796.  相似文献   

2.
A rapid and efficient post-polymerization functionalization of poly(urea-co-urethane) (PUU) onto the graphene oxide (GO) nanosheets has been developed to produce super-acidic polymer/GO hybrid nanosheets. Thus, the surface of GO nanosheets were functionalized with 3-(triethoxysilyl)propyl isocyanate (TESPIC) from hydroxyl groups to yield isocyanate functionalized graphene oxide nanosheets. Then, sulfonated polymer/GO hybrid nanosheets were prepared by condensation polymerization of isocyanate-terminated pre-polyurea onto isocyanate functionalized graphene oxide nanosheets through the formation of carbamate bonds. FTIR and TGA results indicated that TESPIC modifier agent and poly(urea-co-urethane) were successfully grafted onto the GO nanosheets. The grafting efficiency of poly(urea-co-urethane) polymer onto the GO nanosheets was estimated from TGA thermograms to be 205.9%. Also, sulfonated polymer/GO hybrid nanosheets showed a proton conductivity as high as 3.7 mS cm?1. Modification and morphology of GO nanosheets before and after modification processes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).  相似文献   

3.
In this work, a compatibilizer (UHMWPE‐g‐GO) with large specific surface was prepared from graphene oxide (GO) and ultra‐high molecular weight polyethylene (UHMWPE). First, GO was modified by 2, 3‐epoxypropyltrimethylammonium chloride (GTA), subsequently grafted with UHMWPE. UHMWPE‐g‐GO was used to compatibilize the immiscible monomer casting (MC) nylon/UHMWPE blends. With the addition of very low content of UHMWPE‐g‐GO, the compatibility of UHMWPE and the matrix (MC nylon) was remarkably improved without visible agglomerates, which was proved by photographs, scanning electron microscope, dynamic thermomechanical analysis, and contact angle measurement. Therefore, thermal stability, mechanical and tribological properties were obviously increased. A dramatic increment of 94.1% in the impact strength and a decrement of 39.4% in the coefficient friction were observed in the presence of UHMWPE‐g‐GO in the immiscible polymer blends. The approach used in this work was an efficient strategy for immiscible polymer blends with ultra‐high molecular weight. POLYM. ENG. SCI., 57:335–344, 2017. © 2016 Society of Plastics Engineers  相似文献   

4.
二维结构氧化石墨烯(GO)纳米片在高分子导热复合材料领域有良好应用前景,但常受限于片层间相互作用过大导致的局部团聚,不利于力学性能和导热性能的提高。借助GO纳米片表面和边缘提供的大量活性位点以吸附铁基催化剂,进而通过微波辅助合成方法在GO表面原位生长碳纳米管(CNTs)的策略,在数分钟内合成具有三维多层次结构的纳米杂化体(GO-CNT)。通过常规熔融共混方法,可获得GO-CNT在聚丙烯(PP)基体中良好剥离与均匀分散形态,明显不同于GO/PP复合体系中严重的局部团聚现象。均匀分散的GO-CNT对PP复合材料的力学性能和导热性能提升效果显著:在3%(质量分数)含量下,复合材料的屈服强度和热导率分别达到了38.0 MPa和0.76 W/(m·K),较纯PP增幅分别为20%和230%,明显优于传统GO改性复合材料。本研究为解决纳米片状填料在导热复合材料中的应用瓶颈提供了可行的结构设计策略和复合材料制备方法。  相似文献   

5.
Graphene oxide (GO) incorporated ultra-high molecular weight polyethylene (UHMWPE) nanocomposites were prepared by encapsulating GO by UHMWPE in an aqueous media via high-shear mixing, which were subsequently dried and compression molded. Morphological characterizations via scanning electron microscopy revealed the intercalation of UHMWPE chains in the graphitic stacks corresponding to GO. Further, dielectric permittivity of UHMWPE/GO nanocomposite of 1 wt% GO showed a drastic increase (~61) as compared to pure UHMWPE (~2) due to an enhanced interfacial polarization. A significantly higher value of remnant polarization (~10 nC/cm2) and coercive field (~3 kV/cm) was observed in UHMWPE/GO nanocomposite of 1 wt% GO, which showed a strong hysteresis loop of polarization versus electric field plot as compared to pure UHMWPE, which displayed a very weak hysteresis loop. The piezoelectric coefficient (d33) of ~9.5 pm/V was estimated in UHMWPE/GO nanocomposite of 1 wt% GO via piezoresponse force microscopy. Nanocomposite sensor devices were also fabricated and piezoelectric output voltage of ~6 V was recorded in UHMWPE/GO nanocomposite of 1 wt% of GO. We report here for the first time the unique ferroelectric and piezoelectric properties displayed by UHMWPE/GO nanocomposites.  相似文献   

6.
Janus graphene oxide (GO) nanosheets functionalized by amino-containing chemicals were prepared via Pickering emulsion template. A wax-in-water Pickering emulsion was used to mask one side of GO nanosheets in order to achieve asymmetric chemical functionalization. Janus particles were obtained by removing the oil phase. The successful reaction of epoxy groups on the surface of GO with amino-containing chemicals was confirmed by Fourier transform infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TGA). The asymmetric surface structure of Janus GO nanosheets was detected by atomic force microscope (AFM) and X-ray diffraction (XRD). The efficient stabilization of an oil-in-water Pickering emulsion by Janus GO was proved. Polymer microspheres fabricated by using Janus GO as Pickering stabilizer had a more hydrophilic surface compared with those stabilized by symmetrically modified GO.  相似文献   

7.
Graphene-coated ultrahigh molecular weight polyethylene (UHMWPE) powders were prepared by a two-step process. The first step is to coat UHMWPE polymers with graphene oxide (GO) sheets. The second step is to reduce GO on the powders to graphene. The two-step process can effectively prevent the aggregation of graphene during reduction. The resultant graphene/UHMWPE mixtures were hot pressed at 200 °C to obtain the composites with a segregated structure. The composites exhibit high electrical conductivity at a very low percolation threshold (0.028 vol.%). Our method provides a new route for preparing electrical conductive graphene/polymer composites with low percolation threshold.  相似文献   

8.
The synthesis of water‐dispersilbe graphene nanosheets plays an important role in various practical applications. Herein, we have demonstrated an efficient method for the preparation of water‐dispersible graphene hybrid material from graphene oxide (GO) and a hydrophilic‐conducting polymer, namely, poly(3‐aminobenzene sulfonic acid) (PABS). First, the covalent functionalization process of GO with PABS was carried out via a simple amidation reaction between acyl chloride group located on GO surface and the amino group present in the polymer. Second, the GO‐polymer hybrid was chemically reduced into graphene‐polymer hybrid using sodium borohydride as a reducing agent. The resulting hybrid material was characterized using various analytical techniques. Electron microscopic studies were used to characterize the morphology and chemical structure of the resulting hybrids. Fourier transform infrared spectroscopy was used to investigate the initial changes in surface functionalities, while the thermal stability of hybrid material on heating was studied via thermogravimetric analysis. The digital images provided a vivid observation on the high‐dispersion stability of the hybrid material in distilled water. POLYM. ENG. SCI., 52:1854–1861, 2012. © 2012 Society of Plastics Engineers  相似文献   

9.
Hydrolyzed polyacrylamide (HPAM) is a polymer that extensively used in chemical industry and hydrocarbon extraction and refinery processes, but suffers a common problem of high-temperature instability. This study improved high-temperature rheological characteristics of HPAM by using novel graphene oxide (GO) nanosheets. Stable GO dispersions in aqueous HPAM were formulated, and their dynamic and viscoelastic behaviors were studied. The results showed that the addition of GO significantly increased the viscosities and high-temperature stability of the base polymer fluid, as well as the elastic properties of the dispersion. Spectral data indicated the formation of covalent linkages and electrostatic hydrogen bonding between the GO and the HPAM functional groups, leading to enhanced stability and viscosity that is beneficial for high-temperature oil recovery. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47582.  相似文献   

10.
The low surface activity of graphene oxide (GO) stemming from its large conjugated electronic structure can easily affect the dispersion behavior of GO-based polymer matrices. This significantly undermines the properties of the resulting composite materials. Therefore, in order to increase the GO surface activity for use in polymer-based composites, GO was modified using silane coupling agent which was then doped into polydimethylsiloxane (PDMS) polymer to prepare novel paints by sol–gel reaction strategy. The subsequent novel composite coatings based on PDMS/modified GO (mGO) were finally cured with tetraethoxysilane as the hardening agent in the presence of dibutyltin dilaurate catalyst. The effect of doping mGO into PDMS polymer was systematically studied using infrared spectroscopy, micro-Raman spectroscopy, TEM, SEM, XRD, TGA, mechanical test, thermal conductivity test, and the erosion resistance test. It was concluded that the phase compatibility between GO and PDMS was enhanced due to the new interconnecting chemical bonds brought about by the mGO in the composite.  相似文献   

11.
A facile solid-state synthetic route was used to fabricate graphene oxide (GO) decorated with Ag nanoparticles. Ag/GO nanocomposites were prepared by reducing silver acetate with ascorbic acid in the presence of GO at ambient conditions. The characterization results showed that Ag nanoparticles with an average diameter of ~ 50 nm were well dispersed on the surface of GO nanosheets. Moreover, an application of the obtained Ag/GO nanocomposites as a catalyst in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol by NaBH4 was demonstrated. The Ag/GO nanocomposites exhibited high activity and stability for the catalytic reduction of 4-NP.  相似文献   

12.
Co(salen) was supported on graphene oxide (GO) (Co‐GO) by covalently grafting. Spectroscopy analyses confirmed its successful synthesis. Co‐GO demonstrated a high activity in the cleavage of βO4 linkage in lignin model compounds. The catalyst was also effective in depolymerizing an organosolv lignin polymer. The polymer residues were separated, and extensively analyzed by FTIR and NMR in order to understand the various structural changes of the polymer occurring versus catalyst. In catalytic oxidation, the βO4 ether linkages were cleaved and the side‐chains were oxidized occurring in the polymer. The polymer was thus converted into smaller monomers called degradation products which were detected by GC‐MS. The evolution of the polymer found that Co‐GO exhibited a significant catalytic effect as compared with Co‐NaY, Co‐MCM‐48, Co‐SSZ‐13. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44133.  相似文献   

13.
Graphene oxide (GO) is a carbon‐based material, which is one atom thick sheet of graphite. The nanofillers have exceptional stiffness and strength owing to the presence of two‐dimensional graphene backbone. Especially owing to this reason, nanocomposites have been developed using GO for several applications. This review article explores the synthesis of GO from flake graphite. Main emphasis has been afforded on the preparation and characterization of GO nanocomposites, utilizing various industrial polymers for wide application in aerospace, biomedical, military, supercapacitors, electrical, sensor, and so on. Morphological characterization exploring the interaction and extent of dispersion of GO nanosheets in the polymer matrices is extensively accounted. From the reports, it is clear that exfoliation and strong interaction of GO tremendously improved the physical, mechanical, thermal, electrochemical, biocompatibility, and tribological properties of the added polymer. POLYM. COMPOS., 35:2297–2310, 2014. © 2014 Society of Plastics Engineers  相似文献   

14.
This paper investigates the synthesis of graphene oxide (GO)-incorporated polyamide thin-film nanocomposite (TFN) membranes on polysulfone substrate for forward osmosis applications. The GO nanosheets were embedded into polyamide layer using different concentrations (0.05?0.2 wt%). The results represented the alteration of polyamide surface by GO nanosheets and enhancing the surface hydrophilicity by increasing the GO loading. The results showed that the water flux for 0.1 wt% GO embedded nanocomposite (TFN) membrane was 34.7 L/m2 h, representing 90% improvement compared to the thin-film composite, while the salt reverse diffusion was reduced up to 39%.  相似文献   

15.
吕生华  张佳  朱琳琳  贾春茂 《化工学报》2017,68(6):2585-2595
通过氧化法制备得到氧化石墨烯(GO),通过GO与丙烯酸(AA)和丙烯酰胺(AM)进行插层聚合反应制备得到插层复合物GO/P(AA-AM)。检测结果表明,GO在插层复合物中具有较小的尺寸和均匀的分布,将GO/P(AA-AM)掺入水泥基复合材料中,发现水泥水化产物成为规整的针状、棒状或多面体状晶体,并且能够聚集形成具规整形貌的微观结构和宏观结构,水泥基复合材料中的裂缝及有害孔洞比对照样品明显减少,其抗压强度和抗折强度比对照样品有明显提高。提出了GO纳米片层对于水泥基复合材料规整结构的调控机理,认为GO纳米片层及活性基团能够促进水泥化产物形成规整形状的水化晶体,最初形成的水化晶体成为后续水化晶体形成的模板,通过晶体的生长最终形成规整水化晶体及规整的微观结构和宏观结构。  相似文献   

16.
Ultra high molecular weight polyethylene (UHMWPE) was prepared by using MgCl2-supported TiCl4 catalyst in conjunction with triethylaluminium (TEA) cocatalyst. The effects of internal and external donor on polydispersity index (PDI) of UHMWPE were investigated. The catalyst activity with various kinds of internal donor decreased in the following order: none > succinate > phthalate > diether, while the catalyst activity was less influenced by the structure of external donor. The PDI of UHMWPE was examined by using gel permeation chromatography (GPC) analysis and/or rheometry measurements. The PDI obtained by rheometer was matched with the results obtained by GPC within an error of max. 20%. The highest molecular weight and PDI of UHMWPE were obtained by the catalyst of succinate as internal donor. It was also observed that the molecular weight and PDI of UHMWPE were less affected by the introduction of external donor.  相似文献   

17.
Currently, there is great interest in graphene‐based devices and applications because graphene has unique electronic and material properties, which can lead to enhanced material performance. Graphene may be used in a wide variety of potential applications from next‐generation transistors to lightweight and high‐strength polymeric composite materials. Graphene, which has atomic thickness and two‐dimensional sizes in the tens of micrometer range or larger, has also been considered a promising nanomaterial in gas‐ or liquid‐barrier applications because perfect graphene sheets do not allow diffusion of small gases or liquids through its plane. Recent molecular simulations and experiments have demonstrated that graphene and its derivatives can be used for barrier applications. In general, graphene and its derivatives can be applied via two major routes for barrier polymer applications. One is the transfer or coating of few‐layered, ultrathin graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), on polymeric substrates. The other is the incorporation of fully exfoliated GO or rGO nanosheets into the polymeric matrix. In this article, we review the state‐of‐the‐art research on the use of graphene, GO, and rGO for barrier applications, including few‐layered graphene or its derivatives in coated polymeric films and polymer nanocomposites consisting of chemically exfoliated GO and rGO nanosheets, and their gas‐barrier properties. As compared to other nanomaterials being used for barrier applications, the advantages and current limitations are discussed to highlight challenging issues for future research and the potential applications of graphene/polymer, GO/polymer, and rGO/polymer composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39628.  相似文献   

18.
A simple and feasible method to enhance the wear resistance of ultra-high molecular weight polyethylene (UHMWPE) fibers was reported. The graphite oxide (GO) prepared using improved Hummer's method was surface modified with hexadecylamine to improve its compatibility with UHMWPE. Combined with well-dispersion of modified-GO (m-GO) in dichloromethane and the fact that the viscosity of UHMWPE suspension can be decreased by dichloromethane, the well dispersed m-GO/dichloromethane was added into UHMWPE suspension to improve m-GO dispersion in UHMWPE fibers. Finally, UHMWPE fibers with different m-GO concentration were prepared using gel spinning technology. The effect of m-GO concentration on the structure and properties of modified UHMWPE fibers were investigated. The results indicated that the melting temperature and crystallinity of m-GO modified UHMWPE fibers increased with increasing of m-GO concentration, while the fiber's crystal sizes and orientation increased, thus the tensile strength of m-GO modified UHMWPE fibers remained almost undamaged. The introduction of m-GO is beneficial to the formation of smooth transfer film on fiber's surface, which enhanced the self-lubrication of UHMWPE fibers. Compared with pure UHMWPE fiber, the UHMWPE fiber containing 1.5 wt% m-GO had enhanced wear resistance by 55.4% and still maintained high tensile strength of 29.98 cN dtex−1.  相似文献   

19.
In this study, nanosheets including graphene oxide (GO) and reduced graphene oxide (rGO), were incorporated into natural rubber (NR), to study the effects of substituting GO or rGO for carbon black (CB) on the structure and performance of NR/CB composites. The morphological observations revealed the dispersion of CB was improved by partially substituting nanosheets for CB. The improvements in static and dynamic mechanical properties were achieved at small substitution content of GO or rGO nanosheets. With substitution of rGO nanosheets, significant improvement in flex cracking resistance was achieved. NR/CB/rGO (NRG) composites has a much lower heat build‐up value compared with NR/CB/GO (NG) composites at a high load of nanosheets. However, both GO and rGO tended to aggregate at a high concentration, which led to the poor efficiency on enhancing the dynamic properties, or even deteriorate the performance of rubber composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41832.  相似文献   

20.
Graphene oxide (GO) has extensive applications in membrane-based separations, but its dispersion in the membrane has always been a problem due to the presence of π–π interactions in GO nanosheets. In this study, a grafting reaction was designed by using poly (vinyl alcohol) (PVA) for GO grafting modification and poly (vinyl alcohol)-g-graphene oxide (PVA-g-GO) nanocomposites were synthesized. The grafting material to GO was the same as the basic separation polymer material. PVA-g-GO showed better dispersibility and hydrophilicity than GO, and a series of composite membranes were prepared using a polyacrylonitrile (PAN) ultrafiltration (UF) membrane as a substrate. PVA-g-GO nanocomposites and membranes were characterized by using X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), water contact angle, scanning electron microscopy (SEM), etc. The addition of PVA-g-GO improved both the separation performance and anti-swelling property of the composite membrane, and the PVA-g-GO/PVA/PAN composite membrane loaded with 2 wt.% PVA-g-GO obtained a high flux of 4.46 kg/m2 · h and a high rejection of 99.99% when dehydrating 3.5 wt.% NaCl solution at 30°C by pervaporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号