首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ductile–brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile‐butadiene‐styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate‐co‐maleic anhydride (MMA‐MAH) and MMA‐co‐glycidyl methacrylate (MMA‐GMA). The ductile–brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA‐MAH compatibilizer were supertough and showed a ductile–brittle transition temperature at ?10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA‐GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2643–2647, 2003  相似文献   

2.
Blends of compatibilized polyoxymethylene (POM)/ethylene butylacrylate copolymer (EBA)/ethylene‐methyl acrylate‐glycidyl methacrylate copolymer (EMA‐GMA) and uncompatibilized POM/EBA were investigated. The notched impact strength of the compatibilized blends was higher than that of their uncompatibilized counterparts. The toughness of the POM blends was improved obviously with relatively low loading of EBA. Fourier transform infrared spectroscopy (FTIR) spectra of EMA‐GMA, pure POM, and POM/EBA/EMA‐GMA blends indicated that epoxy groups of EMA‐GMA reacted with terminal hydroxyl groups of POM molecular chains. The glass‐transition temperature (Tg) values of the POM matrix and the EBA phase were observed shifted to each other in the presence of EMA‐GMA compatibilizer indicating that the compatibilized blends had better compatibility than their uncompatibilized counterparts. With the addition of EBA to POM, both the compatibilized and uncompatibilized blends showed higher onset degradation temperature (Td) than that of pure POM and the Td values of the compatibilized blends were higher than those of their uncompatibilized counterparts. The scanning electron microscopy showed better EBA particles distribution state in the compatibilized system than in the uncompatibilized one. The compatibilized blend with an obvious rougher impact fracture surface indicated the ductile fracture mode. POLYM. ENG. SCI., 58:1127–1134, 2018. © 2017 Society of Plastics Engineers  相似文献   

3.
Polypropylene-grafted maleic anhydride (PP-g-MA) was used to enhance the compatibility of polypropylene (PP) and recycled acrylonitrile butadiene rubber (rNBR) blends. The blends were prepared by melt mixing using a Haake Rheomix Polydrive R 600/610 mixer at 180°C. The processing torque was used to investigate the mixing process. The better mixing of compatibilized blends (PP/rNBR-MA) was evidence by the higher stabilization torque. Compared to uncomapatibilized PP/rNBR blends, tensile properties and oil resistance of compatibilized PP/rNBR were improved. SEM micrographs of tensile fractured surfaces showed better dispersion and better interfacial adhesion between the phases of compatibilized blends compared to uncompatibilized counterparts.  相似文献   

4.
A compatibilization method that consists of the addition of minor amounts of a commercial thermoplastic, which interacts or reacts with both the matrix and the dispersed liquid crystalline polymer (LCP) of thermoplastic/LCP blends, has been tested in the case of poly(ethylene terephthalate)/Vectra A950 (PET/VA) blends by means of the addition of bisphenol A polycarbonate (PC). The smaller particle size, rougher surface of the fibers and higher ductility of the PET/VA blends of a 30% of the PET substituted by PC clearly showed the suitability of PC as a compatibilizer. The moduli of elasticity of the compatibilized and uncompatibilized blends were similar. This was due to the less‐developed fibrillation of the compatibilized blends, a consequences of their smaller particle size and decreased matrix viscosity. These changes counteracted the effects of improved interfacial adhesion. The improved adhesion led to higher ductility and tensile and impact strengths in most of the compatibilized blends.  相似文献   

5.
在熔融状态下利用Friedel - Crafts 烷基化反应原位增容聚苯乙烯( PS) /三元乙丙橡胶( EPDM) 共混物,研究了不同的催化体系对PS /EPDM 共混物性能及动态流变行为的影响。结果表明,加入助催化剂氯化钠的催化体系有利于强化PS 与EPDM 间的接枝反应,同时降低EPDM 的交联反应,提高了PS /EPDM 共混物的力学性能; 动态力学分析结果表明加入助催化剂后PS /EPDM 共混物的储能模量和PS 的玻璃化转变温度均降低; 动态流变行为显示,在低频率区域,加入了助催化剂的共混物其动态储能模量、损耗模量和复数黏度均高于加入普通催化体系者,损耗因子低于普通催化体系; 从扫描电镜照片可以看出,加入助催化剂共混物的两相结合紧密,脆断面的橡胶粒子剥离空洞减少,相容性提高。  相似文献   

6.
The objective of this study was to investigate the degradability of linear low‐density polyethylene (LLDPE)/(soya powder) blends. The blends were compatibilized by epoxidized natural rubber with 50 mol% of epoxidation. They were exposed to a natural compost medium located in northern Malaysia. The degradability was evaluated by using tensile tests, a morphological study, carbonyl indices, crystallinity measurements, weight loss, and molecular‐weight changes. The tensile strength and elongation at break of the compatibilized blends decreased during one year of exposure. The colonization of fungus and the formation of pores were observed in micrographs. The carbonyl indices, crystallinity, and weight loss increased during exposure, thereby indicating the degradation of the blends. The reduction in molecular weight revealed the degradation of the LLDPE upon composting. Surprisingly, after composting, the compatibilized blends showed more degradation than the uncompatibilized ones. J. VINYL ADDIT. TECHNOL., 20:42–48, 2014. © 2014 Society of Plastics Engineers  相似文献   

7.
Xinlan Zhang  Bo Li  Ke Wang  Qin Zhang  Qiang Fu   《Polymer》2009,50(19):4737-4744
In this work, recycled Poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) plastic (PETG) was used to enhance the properties and lower the cost of polypropylene(PP). In order to adjust the interfacial adhesion, three triblock copolymers having the same styrene block at two ends but different block in the middle, were used a the compatibilizers, namely, styrene–ethylene/butylene–styrene (SEBS), styrene–butadiene–styrene (SBS), styrene–isoprene–styrene (SIS). The ratio of PP to PETG was fixed at 70/30 and the relationship between interfacial adhesion and mechanical properties was investigated. The addition of SIS caused a considerable increase in Izod impact toughness, but only slightly improved toughness was observed for blends compatibilized with SEBS. The effect of SBS on improving the impact toughness lied in between that of SIS and SEBS. SEM micrographs showed that PETG forms a fibrillar-like structure for all the uncompatibilized and compatibilized blends, and the blends compatibilized with SBS have smallest domain size, the blends compatibilized with SEBS have largest domain size, while the ones compatibilized with SIS show a moderate domain size. Results from melt rheometry and SEM observation together with work of interfacial adhesion, indicated a strongest interfacial adhesion in blends compatibilized with SBS, poorest in blends compatibilized with SEBS, and moderate in blends compatibilized with SIS. It is very interesting to found that the much improved impact strength was not observed in the blends with the strongest interfacial adhesion but achieved in the blend with moderate interfacial adhesion. Investigation on the impact fractured surface revealed an easier debonding of fibril from matrix and consequently drawn out of matrix in blends compatibilized by SIS with moderate interfacial adhesion, which was considered as the main reason for the much improved impact toughness in this system.  相似文献   

8.
This study assesses thermal and morphological stabilization of three compatibilizers during mechanical recycling of polymer blends. Polypropylene/poly(ethylene terephthalate) blends compatibilized with three different maleic anhydride grafted compatibilizers were extruded five times via single-screw extrusion. The backbones of the compatibilizers are (1) polypropylene-based, (2) an elastomer block copolymer poly(styrene-co-[ethylene-butylene]-styrene), and (3) a polyolefin elastomer. The degradation and retained functionality of these compatibilizers was assessed by means of simultaneous thermo-gravimetric analysis, melt flow index, a morphology study, differential scanning calorimetry and tensile testing. The results show that degradation of the compatibilized blends during multiple processing is low, although the core stability of the blends depends on the initial stability of all of the components in the blend. The thermal stability across the five extrusions was the most favorable for the matrix based grafted compatibilized blend. The functionality of the compatibilizers did show minor morphological destabilization but did not affect the mechanical properties.  相似文献   

9.
In order to understand the mixing in polymer extrusion, the morphology of PS/LDPE blends compatibilized with SEBS was simulated based on the Lee and Park model. Experiments were performed in a co-rotating twin screw extruder and a Haake mixer, and the morphology of the compatibilized blends of various compositions was compared with the non-compatibilized ones. The size of the dispersed phase of the compatibilized blend was smaller than the non-compatibilized one, and the blend of the PE matrix had a smaller size in the dispersed phase than the non-compatibilized one. Simulation results were agreed well with experiments, and the Lee and Park model could be applied in the extrusion analysis of compatibilized polymer blends.  相似文献   

10.
Both uncompatibilized and compatibilized blends based on polyamide 12 (PA12) and isotactic polypropylene (PP) were prepared in a Brabender Plastograph®. The compatibiliser used was maleic anhydride functionalized polypropylene (PP‐g‐MA). Phase morphology of the blends was inspected in scanning electron microscope (SEM) on cryogenically fractured etched surfaces of the specimens. PA12/PP blends possessed a nonuniform and unstable morphology owing to the incompatibility between their constituents. Addition of compatibiliser improved the interfacial characteristics of the blends by retarding the rate of coalescence. So, the phase morphology became more fine, uniform, and stable. Tensile properties of both uncompatibilized and compatibilized blends were measured as a function of blend composition and compatibiliser concentration. Uncompatibilized blends displayed inferior mechanical properties to compatibilized ones; especially for those containing 40–60 wt % of PP. Reactive compatibilisation of blends was found to be efficient and improved the tensile strength of the blends considerably. Addition of PP‐g‐MA improved the interfacial adhesion, decreased the interfacial tension, and thereby, enhanced the tensile strength by 85%. Finally, various models were adopted to describe the tensile strength of the blends. The experimental data exhibited a reasonably good fit with Nielsen's first power law model. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

11.
Polypropylene-liquid crystalline polymer (PP/LCP) and maleic anhydride compatibilized PP/LCP blends were prepared using the extrusion technique followed by injection molding. The LCP employed was Vectra A950 which consists of 25 mol % of 2,6-hydroxynaphthoic acid and 75 mol % of p-hydroxybenzoic acid. The rheology, morphology, and impact behavior of compatibilized PP/LCP blends were investigated. The rheological measurements showed that the viscosity of LCP is significantly higher than that of the PP at 280°C. This implied that the viscosity ratio of the LCP to the polymer matrix is much larger than unity. Scanning electron microscopy (SEM) observations revealed that the LCP domains are dispersed mainly into elongated ellipsoids in the PP/LCP blends. However, fine fibrils with large aspect ratios were formed in the compatibilized PP/LCP blends containing LCP content ≥ 10 wt %. The development of fine fibrillar morphology in the compatibilized PP/LCP blends had a large influence on the mechanical properties. The Izod impact strength of the PP/LCP blends showed little dependence on the LCP concentrations. On the other hand, the impact strength of the compatibilized PP/LCP blends was dependent on the LCP concentrations. The correlation between the LCP fibrillar morphology and spherulitic structure with the impact properties of the compatibilized PP/LCP blends is discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 521–530, 1998  相似文献   

12.
Compatible polymer blends of polypropylene (PP) with an amorphous polyamide (aPA) were obtained through reactive compatibilization by adding 20% maleic anhydride‐modified copolymer (PP‐g‐MA) to the blends. The blends were made up of a pure PP phase and an aPA‐rich phase where very small amounts of PP were detected. The dispersed phase particle size decreased considerably indicating that compatibilization occurred. Young's modulus of the compatibilized blends increased with respect to that of the uncompatibilized ones. The compatibilized blends were highly ductile, and the impact strength also improved, proving that compatibilization occurred under a broad range of experimental conditions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

13.
反式聚异戊二烯橡胶/NBR并用胶性能的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了反式聚异戊二烯橡胶(TPI)/NBR并用胶的耐油性能手力学性能,以及用TPI接枝-甲基丙烯酸酯(TPI-g-MMA)对并用胶进行的相容改性。研究结果表明,TPI/NBR并用胶耐油性能很好,但力学性能较差,TPI-g-MMA可明显改善TPI和NBR两相之间的相容性,加入TPI-g-MMA相容的TPI-NBR并用胶保持了很好的耐油性能,力学性能明显改善。  相似文献   

14.
Prediction of interfacial tension of compatibilized polymer blends is a challenging open problem, where experiments and theories hardly support each other. In this work, constitutive models proposed for quantifying the interfacial tension of compatibilized polymer blends were revisited and their limitations/capabilities were discussed. In view of available data in the literature, which could provide with possibility of comparison between interfacial tension values obtained in this work and those published before, high‐density polyethylene (HDPE)/polyamide‐6 and HDPE/polyethylene‐co‐vinyl alcohol pairs comprising varying amounts of HDPE‐g‐maleic anhydride compatibilizer precursor were prepared for obtaining model parameters. The inability of theories in monitoring the interfacial tension was accordingly uncovered. However, outcomes from both theoretical and experimental data provided some insights for elucidating the interplay between interfacial tension and rheological characteristics of the studied compatibilized blends. It was also attempted to uncover the relationships between particle size, particle size distribution, and rheological properties of blends compatibilized with different amounts of HDPE‐g‐maleic anhydride precursor. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46144.  相似文献   

15.
Polypropylene was melt blended in a single screw extruder with thermo tropic Vectra B‐950 liquid crystalline polymer (copolyester amide) in different proportions in presence of 2% of EAA, ethylene‐acrylic acid copolymer (based on PP) as a compatibilizer. The mechanical properties of such compatibilized blends were evaluated and compared in respect of their Young's Modulii, Ultimate tensile strength, percent elongation at break, and toughness to those of Pure PP. The Morphology was studied by using a polarizing light microscope (PLM) and Scanning electron microscope (SEM). The Thermal characterization of these blends were carried out by differential scanning calorimeter (DSC).The mechanical properties under dynamic conditions of such compatibilized blends and pure PP were studied by dynamic mechanical analyzer (DMA). Mechanical analysis (Tensile properties) of the compatibilized blends displayed improvements in Modulii and ultimate tensile strength (UTS) of PP matrix with the incorporation of 2–10% of LCP incorporation. The development of fine fibrillar morphology in the compatibilized PP/LCP blends had large influence on the mechanical properties. Differential scanning calorimeter (DSC) studies indicated no remarkable changes in the crystalline melting temperature of the blends with respect to that of pure PP. However, an increase in the softening range of the blends over that of PP was observed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
S. Filippi  N. Dintcheva  P. Magagnini 《Polymer》2005,46(19):8054-8061
The study deals with the effectiveness of maleic anhydride grafted styrene-b-ethylene-co-propylene copolymer (SEPMA) as compatibilizer precursor (CP) for blends of low density polyethylene (LDPE) with polyamide-6 (PA). The CP was produced by grafting MA onto SEP in the melt. The specific interactions between the CP and the blends components have been investigated through characterizations of the binary LDPE/CP and PA/CP blends. The compatibilizing efficiency of the MA-grafted SEP, as revealed by the thermal properties and the morphology of the compatibilized blends, has been shown to be excellent. The morphology, as well as the mechanical properties of the compatibilized with SEPMA 75/25 w/w and 25/75 w/w LDPE/PA6 blends have been compared with those of the blends compatibilized with maleic anhydride functionalized HDPE sample (1-HDPE-g-MA) and with a commercial maleic anhydride grafted styrene-b-(ethylene-co-1-butene)-b-styrene copolymer (SEBSMA1). The results show that the strong compatibilizing efficiency of SEPMA is comparable with that of SEBSMA1, while 1-HDPE-g-MA exhibits a slightly lower activity, particularly for the blends, in which PA is the matrix phase.  相似文献   

17.
Effects of polyethylene‐grafted maleic anhydride as a compatibilizer on the tensile properties of (high‐density polyethylene)/(natural rubber)/(thermoplastic tapioca starch) (HDPE/NR/TPS) blends were investigated. The ratio of HDPE/NR was fixed at 70/30, and these materials were blended with TPS in concentrations varying from 5 to 30% by using a Haake Rheomix 600 mixer. Two series of HDPE/NR/TPS blends were prepared, i.e., with and without compatibilizer. Morphology and tensile properties of the HDPE/NR/TPS blends were evaluated as a function of TPS loading. The tensile strength and elongation at break decreased with the increase of TPS content. However, an improvement in the tensile strength was obtained for compatibilized blends as compared to uncompatibilized blends. The degrees of TPS adhesion and dispersion in HDPE/NR blends were revealed by scanning electron microscopy (SEM). Results showed that a smaller‐sized dispersed phase was achieved for compatibilized blends as compared to that for their uncompatibilized counterparts. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
The dynamic rheological behavior and phase morphology of Polytrimethylene terephthalate (PTT) and ethylene propylene diene monomer (EPDM) uncompatibilized blends and those compatibilized with maleic anhydride grafted EPM (EPM‐g‐MA) were investigated. Effects of blend ratio and reactive compatibilization on the morphology and rheological properties of compatibilized and uncompatibilized blends have been analyzed. The viscosity ratio between the polymers was found to be sensitive to frequency which gave an indirect idea about the unstable morphology. The complex viscosity and dynamic modulus increased with increase in compatibilizer addition up to critical micelle concentration. Palierne and Choi‐Schowalter models were used to calculate the interfacial tension between the polymers. The interfacial tension decreased with the addition of compatibilizer up to CMC. It was also found that the minimum value of interfacial tension was found at CMC beyond that a levelling off is observed. The rheological properties of both compatibilized and uncompatibilized blends are found to be closely related to their phase morphology. POLYM. ENG. SCI., 50:1945–1955, 2010. © 2010 Society of Plastics Engineers  相似文献   

19.
用固相接枝法制备了马来酸酐接枝改性聚丙烯(PP g MAH),研究了PP g MAH增容PP/PA 66共混物的形态结构和性能。结果表明,用PP g MAH增容的PP/PA 66共混物的拉伸强度提高约10MPa,弯曲强度、弯曲模量有所提高,缺口冲击强度和伸长率保持不变。  相似文献   

20.
采用熔体共混的方法制备了三种增容剂增容的聚酰胺1010/聚丙烯(PA1010/PP)共混物,通过傅里叶变换红外光谱(FTIR)、力学性能和差示扫描量热(DSC)测试,对马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)、马来酸酐接枝聚丙烯(PP-g-MAH)和乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物(PTW)对PA1010/PP共混物的增容作用进行了比较研究。结果表明,和非增容体系相比,PP-g-MAH、POE-g-MAH和PTW的拉伸强度分别是非增容体系的125 %、89 %和94 %,冲击强度分别是非增容体系的140 %、200 %和200 %,PTW具有较好的增容效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号