首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The role of the dopamine D3 receptor subtype in the central nervous system is still not well understood. It has a distinct and restricted distribution, mostly associated with limbic territories of the striatum (olfactory tubercle and the shell of nucleus accumbens) in rat brain. Dopaminergic denervation induced by a 6-hydroxydopamine lesion of the nigrostriatal system in rat down-regulates the expression of the D3 receptor. In the present study, we investigated the functional neuroanatomy of the dopamine D3 receptor subtype in the monkey (Macaca fascicularis) basal ganglia. We also studied the effect of administration of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and chronic D1-like (SKF 82958) or D2-like (cabergoline) agonist treatments on dopamine D3 receptor levels using receptor autoradiography. Our results clearly show that the distribution of D3 receptors in the monkey is more closely related to associative and limbic components of the striatum (caudate-putamen), as compared with its sensorimotor counterpart. Hence, D3 receptors may be more specifically involved in cognitive and motivational aspects of striatal functions, which are elaborated in prefrontal, temporal, parietal, cingulate and limbic cortices. Moreover, MPTP administration significantly decreased levels of D3 receptors and this effect was reversed or compensated by a chronic treatment with a D1-like, but not a D2-like, receptor agonist. The D3 receptor may represent an important target for adjunct or direct therapy designed to improve cognitive deficits observed in patients with Parkinson's disease, schizophrenia and other illnesses with frontal lobe cognitive disturbances.  相似文献   

2.
The D3 dopamine receptor, a D2-like receptor, is selectively expressed in the ventral striatum, particularly in the shell of nucleus accumbens and islands of Calleja, where it is found in medium sized substance P neurons. The latter co-express the D1 receptor whose interaction with the D3 receptor was studied by treating rats with selective agonists and antagonists. In agreement with the opposite cAMP response, they mediate in cultured neuroblastoma cells, the D1 and D3 receptors exerted opposite influences on c-fos expression in islands of Calleja. However, in agreement with the synergistic influence of cAMP on D3 receptor-mediated mitogenesis on the same cultured cells, D1 and D3 receptor stimulation in vivo synergistically enhanced preprotachykinin mRNA in the shell of accumbens. This indicates that the two receptor subtypes may affect neurons in either synergy or opposition according to the cell or signal generated. Levodopa-induced behavioral sensitization in hemiparkinsonian rats is another example of D1/D3 receptor interaction. Hence repeated levodopa administration induces the ectopic appearance of the D3 receptor in substance P/dynorphin, striatonigral neurons of the dorsal striatum. This induction is secondary to D1 receptor stimulation in neurons of the denervated side and fully accounts for the sensitization, i.e. the increased behavioral responsiveness to levodopa. During brain development, a similar process could operate to control the late appearance of the D3 receptor in D1-receptor bearing neurons of the ventral striatum at a time at which they start to be innervated by dopamine neurons. Finally, taking into account a variety of genetic, developmental, neuroimaging and pharmacological data, we postulate that imbalances between the levels of D1 and D3 receptors in the same neurons could be responsible for schizophrenic disorders.  相似文献   

3.
4.
Striatal tissue concentrations of neurotensin, expression of neurotensin/neuromedin N (NT/N) mRNA, and numbers of neurotensin-immunoreactive neurons are increased by d-amphetamine (amph), which stimulates dopamine release in the striatum, and haloperidol (hal), a dopamine receptor antagonist with high affinity for D2-like receptors. The possibility that the effects of these drugs involve distinct subpopulations of striatal neurons was addressed in this study, in which the relative numbers and distributions of striatal neuron profiles containing neurotensin immunoreactivity and/or NT/N mRNA were compared following administrations of hal, amph, hal and amph co-administered, and vehicle. Fourteen striatal subterritories in caudate-putamen, nucleus accumbens, and olfactory tubercle were evaluated. Amph produced increases in the expression of neurotensin preferentially in the ventromedial and caudodorsal subterritories of the caudate-putamen, the rostrobasal cell cluster and lateral shell of the nucleus accumbens, and the olfactory tubercle. Haloperidol produced increased neurotensin expression in much of dorsal and ventral striatum, most prominently in the rostral, dorsomedial and ventrolateral quadrants of the caudate-putamen, and in the rostrobasal cell cluster, rostral pole, medial and lateral shell of the nucleus accumbens and the olfactory tubercle. The numbers of neurons responding to amph and hal in all subterritories following co-administration of the two drugs were significantly less than the summed numbers responding individually to amph and hal. Furthermore, in the subterritories where immunohistochemically detectable responses elicited by amph exceeded those produced by hal, co-administration of the two drugs resulted in responses comparable to those elicited by hal given alone. It is suggested that some of the reported anti-dopaminergic behavioral effects of basal ganglia neurotensin may be attenuated in conditions of reduced dopamine neurotransmission.  相似文献   

5.
The influence of chronic antidepressant administration on expression of the three major phosphodiesterase (PDE) 4 subtypes found in brain (PDE4A, PDE4B, and PDE4D) was examined. The treatments tested included representatives of four major classes of antidepressants: selective reuptake inhibitors of serotonin (sertraline and fluoxetine) or norepinephrine (desipramine), a monoamine oxidase inhibitor (tranylcypromine), and electroconvulsive seizure. Expression of PDE4A and PDE4B, but not PDE4D, mRNA and immunoreactivity were significantly increased in rat frontal cortex by chronic administration of each of the four classes of antidepressants. We also found that antidepressant administration significantly increased the expression of PDE4B mRNA in the nucleus accumbens, a brain region thought to mediate pleasure and reward that could also contribute to the anhedonia often observed in depressed patients. In contrast, expression of PDE4A and PDE4B were not influenced by short-term treatment (1 or 7 d) and were not influenced by chronic administration of nonantidepressant psychotropic drugs (cocaine or haloperidol), demonstrating the time dependence and pharmacological specificity of these effects. Upregulation of PDE4A and PDE4B may represent a compensatory response to antidepressant treatment and activation of the cAMP system. The possibility that targeted inhibition of these PDE4 subtypes may produce an antidepressant effect is discussed.  相似文献   

6.
The glutamate analogue kainic acid was injected into the hippocampus of intact or 6-hydroxydopamine deafferented rats to investigate the influence of hippocampal neurons on the expression of dopamine D1 and D2 receptor mRNAs in subregions of the striatal complex and possible modulation by dopaminergic neurons. Quantitative in situ hybridization using 35S-labeled oligonucleotide probes specific for dopamine D1 and D2 receptor mRNAs, respectively, were used. It was found that an injection of kainic acid into the hippocampal formation had alone no significant effect on dopamine D1 or D2 receptor mRNA levels in any of the analyzed striatal subregions in animals analyzed 4 h after the injections. Kainic acid stimulation in the hippocampus ipsilateral to the dopamine lesion produced an increase in D1 receptor mRNA levels in the ipsilateral medial caudate-putamen, and a bilateral increase in core and shell of nucleus accumbens (ventral striatal limbic regions). A unilateral 6-hydroxydopamine lesion alone caused an increase in D2 receptor mRNA in the lateral caudate-putamen (dorsal striatal motor region) ipsilateral to the lesion and an increase in D1 receptor mRNA in the accumbens core ipsilateral to the lesion. However, in dopamine-lesioned animals, dopamine D1 receptor mRNA levels were increased bilaterally in nucleus accumbens core and shell and in the ipsilateral medial caudate-putamen following kainic acid stimulation in the hippocampus ipsilateral to the dopamine lesion. These results indicate a differential regulation of the expression of dopamine D1 and D2 receptor mRNAs by midbrain and hippocampal neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The neurochemical anatomy of the human nucleus accumbens was studied by comparing the distributional patterns of [3H]DAMGE (mu opioid receptor), [3H]bremazocine (kappa opioid receptor), [3H]SCH-23390 (D1-like dopamine receptor), [3H]7-OH-DPAT (D3 dopamine receptor) binding, preproenkephalin mRNA and acetylcholinesterase activity in sections of post mortem human striatum. Our results demonstrate the presence of at least two neurochemically distinct divisions within the human nucleus accumbens, which may be homologous to the 'shell' and 'core' divisions of the nucleus as found in the rat.  相似文献   

8.
Loss of nigrostriatal neurons leads to striatal dopamine deficiency and subsequent development of parkinsonism. The effects of this denervation on D2-like receptors in striatum remain unclear. Most studies have demonstrated increases in striatal dopamine D2-like receptors in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated denervation, but others have found either decreases or no change in binding. To clarify the response to denervation, we have investigated the time-dependent changes in dopamine D2, D3, and D4 receptor protein and mRNA levels in unilaterally MPTP-lesioned baboons. MPTP (0.4 mg/kg) was infused into one internal carotid artery, producing a contralateral hemi-parkinsonian syndrome. After MPTP treatment, the animals were maintained for 17-480 d and then euthanized. MPTP decreased ipsilateral dopamine content by >90%, which did not change with time. Ipsilateral D2-like receptor binding in caudate and putamen initially decreased then increased two- to sevenfold over the first 100 d and returned to near baseline levels by 480 d. Relative levels of D2 mRNA were essentially unchanged over this period. D4 mRNA was not detected. In contrast, D3 mRNA increased sixfold by 2 weeks and then decreased. At the peak period of increase in binding sites, all D2-like receptors were in a micromolar affinity agonist-binding state, implying an increase in uncoupled D2 but not D3 receptor protein. Taken together, these data suggest that MPTP-induced changes in D2-like dopamine receptors are complex and include translational or post-translational mechanisms.  相似文献   

9.
A common action of chronic antidepressant treatments is the potentiation of dopaminergic transmission in the limbic system. We now report that chronic, but not acute, treatment with fluoxetine (2.5 mg/kg by intragastric gavage once a day for 21 days) potentiates the locomotor stimulant effect of quinpirole, a selective dopamine D2/D3 receptor agonist. However, neither quinpirole-induced stereotypies nor the sedative effects elicited by low doses of this dopamine receptor agonist are influenced by chronic fluoxetine. These results suggest that fluoxetine, as well as classical antidepressants, sensitize postsynaptic dopamine D2/D3 receptors in the mesolimbic system.  相似文献   

10.
Nucleus accumbens dopamine is often hypothesized as the critical factor for modulating cocaine self-administration. In the current study we examined the extent to which dopamine in the amygdala could contribute to cocaine intake behaviour and modify nucleus accumbens dopamine levels. Rats were trained to self-administer intravenous cocaine (1.5 mg/kg/injection) under a fixed-ratio reinforcement schedule in daily 3 h operant training sessions. In the first in vivo microdialysis experiment, extracellular dopamine levels were found to be increased 200% of baseline in the amygdala and by 400% in the nucleus accumbens. Although cocaine induced similar profiles of dopamine overflow in the two mesolimbic areas, in the nucleus accumbens the latency of the dopaminergic response was shorter (three- to four-fold) during both initiation and termination of the cocaine self-administration session than in the amygdala. Despite achieving a stable self-regulated pattern of cocaine intake and high dopamine concentrations in the nucleus accumbens, a unilateral injection of the D1 receptor antagonist SCH 23390 (0.5 or 1.5 microg) into the amygdala was still able to increase the rate of cocaine intake. This behavioural effect was accompanied by a dose-dependent increase in nucleus accumbens dopamine levels; at the highest SCH 23390 concentration cocaine intake was increased by 400% and dopamine levels were potentiated by an additional 400%. In vivo autoradiography using [3H]SCH 23390 showed that D1 receptor sites contributing to the behavioural and subsequent neurochemical effects were predominantly localized to the amygdala and not the nucleus accumbens. Altogether these results point to a significant contribution of in vivo amygdala D1 dopamine transmission to cocaine self-administration behaviour.  相似文献   

11.
Receptor binding autoradiography, using the selective ligand [3H]7-OH-(R)DPAT (R(+)-2-dipropylamino-7-hydroxy 1,2,3,4-tetrahydronaphthalene), showed that piribedil is a potent inhibitor at dopamine D3 receptors in limbic regions (island of Calleja), with affinity (IC50) between 30 and 60 nM. The in vitro IC50 of piribedil for inhibition of [3H]spiperone binding to receptors of the dopamine D2-like family (D2, D3 and D4), ranged between 10(-7) and 10(-6) M in different brain regions (medial and lateral caudate putamen, olfactory tubercles, and nucleus accumbens). At the highest concentration tested (10(-5 M) piribedil inhibited dopamine D1 receptor binding by < 50%. It is concluded that piribedil has 20 times higher affinity for dopamine D3 than for dopamine D2-like receptors, and very low affinity for the dopamine D1 receptor subtype in rat brain. How this pattern of receptor affinity is related to the pharmacological profile of piribedil deserves further investigation.  相似文献   

12.
The extracellular concentrations of dopamine (DA) and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the striatum and the nucleus accumbens were measured in awake, freely-moving rats. Clozapine (20 mg/kg, i.p.) increased extracellular DA and HVA in both regions but increased DOPAC only in the striatum. Scopolamine (1 mg/kg), although it had no effect by itself in the striatum or nucleus accumbens, inhibited the ability of clozapine to increase extracellular DA, DOPAC and HVA concentrations in the striatum. The clozapine-induced increase in DA in the frontal cortex was not blocked by scopolamine. Haloperidol (1 mg/kg, i.p.) and thioridazine (10 mg/kg, i.p.) also increased extracellular DA, DOPAC and HVA in the striatum, but scopolamine pretreatment did not inhibit these increases. The results suggest that clozapine differs from haloperidol and thioridazine in that the effect of clozapine, but not that of the two neuroleptic drugs, to increase DA release in the striatum acutely depends on muscarinic receptor stimulation. These results suggest that clozapine, despite its strong muscarinic antagonist properties, does not produce full blockade of muscarinic receptors in vivo in the striatum. The interaction of clozapine with the cholinergic system in the striatum could be relevant to its lack of ability to produce extrapyramidal symptoms or tardive dyskinesia.  相似文献   

13.
14.
Neuroleptic drugs such as haloperidol (H) induce a rapid increase in neurotensin/neuromedin N (NT/N) gene expression in the dorsolateral striatum (DLSt) and nucleus accumbens (NA) in young adult rats. This effect may be mediated by post-receptor effectors that are activated by dopamine D2 receptor antagonism. The regional pattern of induction of neurotensin gene expression correlates with the side effect profile of particular neuroleptics. As motor side effects of H differ in aged animals, we hypothesized that the regional expression of the neurotensin gene may differ between young and old animals. We administered H or saline acutely to 3, 14, and 25 month-old Fischer 344 rats, followed by in situ hybridization and quantitative autoradiography for NT/N mRNA. There was a significant age effect on the H-induced NT/N mRNA response in the DLSt, but not the NA, of older animals. In addition to the blunted NT/N mRNA response, significant decreases in D2 receptor mRNA were observed in the lateral striatum of another group of young, middle-aged, and aged rats. Age-related blunting of the NT/N mRNA response to H in the DLSt may be due in part to a decrease in D2 receptors in this structure.  相似文献   

15.
Glutamate agonists have been shown to stimulate striatal dopamine release, but less is known about dopamine-glutamate interactions at the receptor level. We treated rats with 0.3, 1.0, or 3.0 mg/kg of MK-801, an NMDA antagonist, daily for 1 week and, using in situ hybridization, measured dopamine receptor mRNA levels in cortical and subcortical structures. MK-801 caused a significant increase of D1 and D2 mRNA in the dorsal and ventral striatum, a significant decrease of D3 mRNA in the nucleus accumbens, and a significant decrease of D1 mRNA in the limbic cortex. Dopamine autoreceptor expression, reflected by D2 mRNA in the midbrain, was increased in the ventral tegmental area, but not in the substantia nigra. Thus, MK-801 appears to differentially regulate the mesocorticolimbic and nigrostriatal dopamine systems.  相似文献   

16.
Typical antipsychotic drugs, such as haloperidol and chlorpromazine, increase synthesis of the neuropeptide neurotensin (NT) in both the striatum and the nucleus accumbens, whereas atypical antipsychotic drugs, such as clozapine and olanzapine, do so only in the nucleus accumbens. By using in vivo microdialysis, we now report that acute administration of haloperidol, clozapine, or olanzapine failed to alter the release of NT in either the striatum or nucleus accumbens. In contrast, chronic administration of haloperidol for 21 days increased NT release in both the striatum and nucleus accumbens, whereas treatment for 21 days with the atypical antipsychotic drugs, clozapine or olanzapine, increased NT release selectively in the nucleus accumbens. These findings suggest that (i) increased NT mRNA expression and NT tissue concentrations are associated with increases in the extracellular fluid concentrations of the peptide and (ii) atypical antipsychotic drugs may exert their therapeutic effects and produce fewer side effects by virtue of their selectivity in limbic compared with striatal, target neurons.  相似文献   

17.
The role of dopaminergic innervation on the postnatal developmental expression of D1 dopamine receptors was investigated. Bilateral destruction of dopamine-containing neurons was achieved by treating rats intracisternally with 6-hydroxydopamine (6-OHDA) on postnatal day 3, and rats were killed on day 21. To ensure effective reduction of D1 receptor activation by residual dopamine, a group of 6-OHDA-lesioned rats was given twice daily injections of the D1 receptor antagonist SCH-23390, from day 4 to 20. D1 dopamine receptor binding was assessed in the caudate-putamen, nucleus accumbens, and olfactory tubercle by quantitative autoradiographic analysis of [3H]SCH-23390 binding. In addition, the relative amount of D1A receptor mRNA was assessed by in situ hybridization of a 35S-labeled riboprobe. In the developing rats, neither the amount of [3H]SCH-23390 binding nor the amount of D1A receptor mRNA was altered by 6-OHDA lesioning followed by chronic treatment with SCH-23390. Thus, bilateral destruction of dopamine-containing neurons and treatment with SCH-23390 in neonatal rats did not interfere with the developmental expression of D1 receptors or alter the levels of mRNA that code for this receptor protein. Treatment of intact rats with SCH-23390 from postnatal day 4 to 20 also did not alter [3H]SCH-23390 binding or levels of D1 receptor mRNA. However, adult rats treated chronically with SCH-23390 exhibited increased [3H]SCH-23390 binding but did not show a significant change in D1 receptor mRNA levels.  相似文献   

18.
This investigation examined dopamine release and metabolism in nucleus accumbens core and shell during three operant tasks in the rat. Rats were trained to lever press on a fixed-ratio 5, variable-interval 30 s, or a tandem variable interval 30/fixed-ratio 5 schedules; these three schedules were chosen because they generate a wide range of response and reinforcement rates. After several weeks of training, dialysis probes were implanted into nucleus accumbens core or shell subregions. A single 30 min behavioural session was conducted during the dialysis test session. Rats lever pressing on each of the three operant schedules showed a significant increase in extracellular dopamine relative to the food-deprived control group during the behavioural session. In addition, increases in dopamine in nucleus accumbens shell were found to be significantly greater than in the core during the lever pressing period. Across all three schedules, extracellular dopamine in the nucleus accumbens was significantly correlated with the number of lever presses performed, but was not correlated with the number of food pellets delivered. Analysis of covariance, which used amount of food consumed as the covariate, showed an overall group difference, indicating that dopamine levels increased in lever pressing animals even if one corrected for the amount of food consumed. These results indicate that dopamine release was more responsive in the nucleus accumbens shell than in the core during operant responding, and that increases in extracellular dopamine in nucleus accumbens are related to response rate rather than reinforcement magnitude.  相似文献   

19.
We provide evidence that dopamine receptors differentially modulate tyrosine hydroxylase and aromatic L-amino acid decarboxylase in the mouse striatum. The dopamine D1 receptor family (D1-like) antagonist, R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1 H-3-benazepine (SCH 23390), elevated aromatic L-amino acid decarboxylase activity and protein content in striatum, as well as the mRNA for the enzyme in midbrain. The dopamine D1-like receptor agonist, (+/-)-1-phenyl-2,3,4,5-tetrahydro-(1 H)-3-benzazepine-7,8-diol (SKF 38393), had no effect on aromatic L-amino acid decarboxylase. The dopamine D1-like drugs had no effect on tyrosine hydroxylase. In contrast, the dopamine D2 receptor family (D2-like) antagonists haloperidol and spiperone elevated both tyrosine hydroxylase and aromatic L-amino acid decarboxylase activities. The increase in aromatic L-amino acid decarboxylase activity was accompanied by elevated enzyme protein content but not mRNA. The dopamine D2-like receptor agonists, bromocriptine, quinpirole and (+/-)-7-hydroxydipropylaminotetralin (7-OH-DPAT), all decreased striatal tyrosine hydroxylase. Under the conditions used, bromocriptine and 7-OH-DPAT, but not quinpirole, decreased aromatic L-amino acid decarboxylase activity of striatum. Both the dopamine D1- and D2-like receptor antagonists enhanced the turnover of striatal dopamine to differing degrees, as judged by the ratio of acid metabolites of dopamine to dopamine. Taken together our results indicate that aromatic L-amino acid decarboxylase can be modulated independently of tyrosine hydroxylase.  相似文献   

20.
In radioligand binding studies, BIMG 80, a new putative antipsychotic, displayed good affinity at certain serotonin (5-HT1A, 5-HT2A, 5-HT6), dopamine (D1, D2L, D4), and noradrenergic (alpha1) receptors. The effect of acute subcutaneous BIMG 80, clozapine, haloperidol, risperidone, amperozide, olanzapine, and Seroquel was then investigated on dopamine release in medial prefrontal cortex, nucleus accumbens, and striatum in freely moving rats using the microdialysis technique. Four different neurochemical profiles resulted from the studies: (a) Systemic administration of BIMG 80, clozapine, and amperozide produced greater percent increases in dopamine efflux in medial prefrontal cortex than in the striatum or the nucleus accumbens. (b) Haloperidol induced a similar increase in dopamine concentrations in the striatum and nucleus accumbens with no effect in the medial prefrontal cortex. (c) Risperidone and olanzapine stimulated dopamine release to a similar extent in all brain regions investigated. (d) Seroquel failed to change significantly dopamine output both in the medial prefrontal cortex and in the striatum. Because an increase in dopamine release in the medial prefrontal cortex may be predictive of effectiveness in treating negative symptoms and in the striatum may be predictive of induction of extrapyramidal side effects, BIMG 80 appears to be a potential antipsychotic compound active on negative symptoms of schizophrenia with a low incidence of extrapyramidal side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号