共查询到20条相似文献,搜索用时 15 毫秒
1.
随着网络技术的发展和网络规模的扩大,针对计算机网络攻击的方式也日趋多样,那么入侵检测就成为了网络安全研究的热点。为此分析研究了模糊C均值聚类算法在入侵检测中的应用,在此基础上从初始聚类中心、初始化隶属度矩阵、加权指数m和与其他方法相结合四个方面对其在入侵检测中的应用做了进一步的研究,并且讨论了这些算法存在的问题,同时指出了模糊C均值聚类在入侵检测中的研究方向。 相似文献
2.
随着网络技术的发展和网络规模的扩大,针对计算机网络攻击的方式也日趋多样,那么入侵检测就成为了网络安全研究的热点。为此分析研究了模糊C均值聚类算法在入侵检测中的应用,在此基础上从初始聚类中心、初始化隶属度矩阵、加权指数m和与其他方法相结合四个方面对其在入侵检测中的应用做了进一步的研究,并且讨论了这些算法存在的问题,同时指出了模糊C均值聚类在入侵检测中的研究方向。 相似文献
3.
不完整大数据的分布式聚类填充算法 总被引:2,自引:0,他引:2
传统大数据填充算法是根据整个数据集对缺失数据进行填充,使得填充值容易受到不同类别数据的干扰,导致填充结果不精确。针对该问题,给出不完整数据的相似度度量方法,使用近邻传播( AP )算法对不完整数据进行聚类。采用云计算技术优化AP聚类算法,实现一种基于MapReduce的分布式聚类算法,根据算法聚类结果将同一类数据对象划分到相同簇中,并利用同一类对象的属性值对缺失值进行填充。实验结果表明,该算法能实现不完整大数据的聚类,同时加快聚类速度,提高缺失数据的填充精度。 相似文献
4.
针对现有层次聚类算法难以处理不完备数据集,同时考虑样本与类簇之间的不确定关系,提出一种面向不完备数据的集对粒层次聚类算法-SPGCURE.首先,采用集对信息粒的知识对缺失值进行处理,不同于以往算法中将缺失属性删除或者填充,用集对联系度中的差异度来表示缺失属性值,提出一种改进的集对信息距离度量方法,用于考量不完备数据样本... 相似文献
5.
提出了一种基于模糊C-means聚类法的矢量量化,并将其用于语音特征的矢量量化。从语音信号中提取12阶MFCC倒谱系数作为待分群样本的矢量数据,有效地降低数据量及计算量,并可以避免杂信的不良影响。且实验得到的码本分布合理,没有空类,表明了该量化方法对语音识别很有效。 相似文献
6.
针对数据集中若存在孤立点或者是噪声数据会影响模糊C均值聚类算法(FCM)的聚类性能问题,本文将离群点的辨认方法与FCM算法相结合,提出一种改进的FCM聚类算法。该算法有效地降低了孤立点或噪声数据对正常数据的影响,提高了FCM算法的聚类精度。将该算法在入侵检测系统中进行实验验证,通过与FCM算法进行对比分析,证明了该算法的有效性和可行性。 相似文献
7.
数据挖掘过程中的模糊聚类方法 总被引:6,自引:0,他引:6
在研究数据挖掘过程中常见的数据聚类方法的基础上,在数据挖掘中引入了模糊聚类分析的方法,分析了该方法在数据挖掘过程中的特性,讨论了其在大型数据库中的应用方法。 相似文献
8.
从加权广义欧氏权距离平方和最小概念出发,在循环迭代模糊聚类算法的基础上提出一种数据集指标值残缺的模糊聚类模型,示例分析了不同数据集在不同残缺程度下的聚类效果,拓展了模糊聚类算法应用领域。 相似文献
9.
为了提高软件质量,控制和改汕软件开发过程,需要有效地度量软件开发过程和分析其过程各个阶段收集的度量数据。文中将模糊聚类算法应用到软件度量的数据分析中。先给出了数据挖掘相关知识和理论,再介绍了该算法在软件度量数据分析中应用的实验研究。由于较快地发现有严重缺陷的模块,进而提高了软件测试效率。 相似文献
10.
提出一种新的鲁棒核模糊C-均值聚类算法.将连通核与AFCM(Alternative fuzzy C-means)聚类算法相结合,给出基于连通核的核AFCM:CRKFCM(Connectivity kernel based robust fuzzy C-means).CRKFCM一方面有效地利用了连通核,可以对任意形状数据聚类,且避免了核参数的选取问题;另一方面在特征空间使用非欧氏距离,可以有效地处理含噪声数据的聚类问题.实验结果表明,与原有的AFCM和连通核硬C-均值(CKHCM,Connectivity kernel based hard C-means)聚类算法相比,新算法在处理噪声环境中的任意形状聚类问题方面更有效. 相似文献
11.
基于二维直方图的图像模糊聚类分割新方法 总被引:6,自引:0,他引:6
基于二维直方图的模糊聚类分割算法可以有效地抑制噪声的干扰。但是,FCM算法用于图像数据聚类时的最大缺陷是运算的开销太大,这就限制了这种方法在图像分割中的应用。该文根据FCM算法和灰度图像的特点,提出了一种适用于灰度图像分割的抑制式模糊C-均值聚类算法(S-FCM)。通过调节抑制因子α来提高分割速度和分类的正确率。实验结果表明,新算法对小目标灰度图像的分割效果优于FCM算法。 相似文献
12.
基于核的模糊聚类算法 总被引:2,自引:0,他引:2
在聚类分析中,模糊c-均值算法是应用最广泛的聚类算法之一,针对该算法对初始化敏感,容易陷入局部极小点的缺点,论文提出了一种基于核的模糊聚类算法。在算法中将核方法与模糊可能性算法相结合,将模糊c-均值算法结果作为初始中心,放松了对隶属度归一化的条件,对噪声有更好的处理能力。IRIS数据和人造数据的实验结果表明该算法的有效性。 相似文献
13.
为解决高维和高不确定级别的数据流聚类问题,提出了一种针对不确定数据流的聚类算法HFMicro。引入粗糙模糊集理论,定义了一种新的不确定数据流模型,并利用隶属程度的上、下近似来描述微簇。根据粗糙模糊集间的相似程度来选择最合适的微簇。使用动态衰减窗口模型提高算法的效率和聚类效果。由于采用了离线聚类模式,使得算法具有较好的实时性。实验结果表明,该算法能够很好地处理高维和高不确定级别的数据流,同时兼容存在级不确定性和属性级不确定性,与现有算法相比效果更好。 相似文献
14.
可能性C均值聚类算法(PCM)对于噪声显示了良好的鲁棒性,但是它没有考虑到像素的空间信息,在含有大量噪声的情况下,PCM算法的分割性能会大大降低。基于PCM算法,提出了一种改进的PCM算法,该算法改进了隶属度函数,新的像素点隶属度更新为其邻域隶属度的几何均值。实验结果显示新的算法能够更有效的分割图像,并显示出良好的抗噪能力。 相似文献
15.
基于免疫单亲遗传和模糊C均值的聚类算法 总被引:6,自引:0,他引:6
聚类算法是数据挖掘中的重要方法。为了克服FCM初始值敏感、客易陷入局部最优解以及普通遗传算法聚类时的搜索速度和聚类精度的矛盾,在分析FCM算法和基于道传聚类算法的不足基础上,提出了一种基于免疫单亲遗传和模糊C均值的混合聚类算法,先以免疫单亲遗传聚类算法初始化,找到接近全局的最优解,再用FCM算法进行求解。实验表明,它既较好地解决了局部最优问题,又可以利用FCM的优点来提高整体的收敛速度。 相似文献
16.
基于模糊神经网络方法实现茶味信号识别的研究 总被引:1,自引:0,他引:1
提出一种基于模糊c-均值聚类(FCM)的模糊神经网络模型用于荼味信号识剐的方法。该方法采用模糊c-均值聚类实现模糊神经网络中模糊子集及其隶属度函教的自动确定,并对模糊加权型推理法进行了改进,在此基础上构枣了一个模糊神经网络模型。通过5种茶味信号识别的仿真实验,表明本文提出方法的有效性。 相似文献
17.
在大量的模糊聚类算法中,模糊C均值聚类算法是应用最为广泛的,然而它存在着一些缺点:对初始值敏感,对噪声数据敏感,容易陷入局部最优。针对以上问题,提出了一种基于粒子群优化的模糊聚类算法,利用粒子群强大的全局寻优能力,这种算法克服了模糊C均值聚类算法的缺点,试验证明,这种算法是一种很有潜力的模糊聚类算法。 相似文献
18.
关于模糊C-均值(FCM)聚类算法的改进 总被引:3,自引:0,他引:3
针对模糊C-均值(FCM)聚类算法的容易收敛于局部极值的不足,提出了一种改进的模糊FCM聚类算法,此新算法在聚类中心选取和优化过程中进行了充分的考虑,是一种用于确定最佳聚类数的聚类算法,并且利用了分阶段思想,结合动态直接聚类算法和标准聚类算法,来尽量避免模糊C-均值(FCM)聚类算法的不足。新算法与传统(FCM)聚类算法方法相比,提高了算法的寻优能力,并且迭代次数更少,在准确度上也有较大的提高,具有很好的实际应用价值。 相似文献
19.
20.
文中提出一种新的方法通过使用模糊c均值对原始数据集进行预处理操作,通过这个操作可以把定量属性值转换为二进制值,继而就会得到原始数据集的模糊版本(由模糊记录和模糊属性组成)。另外,文中又提出了一种基于模糊Apfiori算法的快速提取规则的算法,这种算法是利用模糊聚类从先前得到的原始数据集的模糊版本中提取模糊频繁项集从而可以得到模糊关联规则。在文章的最后,实验结果显示了提出的新算法在处理大型数据集时在挖掘时间上要优于传统的Apriori算法。对大型数据库来说,该算法在实用性和可用性上面都有很好的发展前景。 相似文献