首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electrolyte for lithium batteries based on the ionic liquid 3-methy-1-propylimidazolium bis(trifluoromethysulfony)imide (PMIMTFSI) complexed with lithium bis(trifluoromethysulfony)imide (LiTFSI) at a molar ratio of 1:1 has been investigated. The electrolyte shows a high ionic conductivity (∼1.2 × 10−3 S cm−1) at room temperature. Over the whole investigated temperature range the ionic conductivity is more than one order of magnitude higher than for an analogue electrolyte based on N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Py14TFSI) complexed with LiTFSI and used here as a benchmark. Raman results indicate furthermore that the degree of lithium coordinated TFSI is slightly lower in the electrolyte based on PMIMTFSI and thus that the Li+ charge carriers should be higher than in electrolytes based on Py14TFSI. An ionic liquid gel electrolyte membrane was obtained by soaking a fibrous fully interconnected membrane, made of electrospun P(VdF-HFP), in the electrolyte. The gel electrolyte was cycled in Li/ionic liquid polymer electrolyte/Li cells over 15 days and in Li/LiFePO4 cells demonstrating good interfacial stability and highly stable discharge capacities with a retention of >96% after 50 cycles (∼146 mAh g−1).  相似文献   

2.
The electrochemical properties of a solid hybrid polymer electrolyte for lithium batteries based upon tri-ethyl sulfonium bis(trifluorosulfonyl) imide (S2TFSI), lithium TFSI, and poly(ethylene oxide) (PEO) is presented. We have synthesized homogenous freestanding films that possess low temperature ionic conductivity and wide electrochemical stability. The hybrid electrolyte has demonstrated ionic conductivity of 0.117 mS cm−1 at 0 °C, and 1.20 mS cm−1 at 25 °C. At slightly elevated temperature ionic conductivity is on the order of 10 mS cm−1. The hybrid electrolyte has demonstrated reversible stability against metallic lithium at the anodic interface and >4.5 V vs. Li/Li+ at the cathodic interface.  相似文献   

3.
Electrospun, non-woven membrane of high molecular weight poly(acrylonitrile) (PAN) is demonstrated as an efficient host matrix for the preparation of gel polymer electrolytes for lithium-ion batteries. Electrospinning process parameters are optimized to get a fibrous membrane of PAN consisting of bead-free, uniformly dispersed thin fibers with diameter in the range 880-1260 nm. The membrane with good mechanical strength and porosity exhibits high uptake when activated with the liquid electrolyte of 1 M LiPF6 in a mixture of organic solvents and the gel polymer electrolyte shows ionic conductivity of 1.7 × 10−5 S cm−1 at 20 °C. Electrochemical performance of the gel polymer electrolyte at 20 °C is evaluated in lithium-ion cell with lithium cobalt oxide cathode and graphite anode. Good performance with a low capacity fading on charge-discharge cycling is demonstrated.  相似文献   

4.
A new unsymmetrical lithium salt containing F, C6H4O22− [dianion of 1,2-benzenediol], lithium difluoro(1,2-benzene-diolato(2-)-o,o′)borate (LDFBDB) is synthesized and characterized. Its thermal decomposition in nitrogen begins at 170 °C. The cyclic voltammetry study shows that the LDFBDB solution in propylene carbonate (PC) is stable up to 3.7 V versus Li+/Li. It is soluble in common organic solvents. The ionic dissociation properties of LDFBDB are examined by conductivity measurements in PC, PC+ ethyl methyl carbonate (EMC), PC + dimethyl ether (DME), PC + ethylene carbonate (EC) + EMC solutions. The conductivity values of the 0.564 mol dm−3 LDFBDB electrolyte in PC + DME solution is 3.90 mS cm−1. All these properties of the new lithium salt including the thermal characteristics, electrochemical stabilities, solubilities, ionic dissociation properties are studied and compared with those of its derivatives, lithium difluoro(3-fluoro-1,2-benzene-diolato(2-)-o,o′)borate (FLDFBDB), lithium [3-fluoro-1,2-benzenediolato(2-)-o,o′ oxalato]borate (FLBDOB), and lithium bis(oxalate)borate (LBOB).  相似文献   

5.
New types of dimensionally stable, flexible gel-type electrolyte membranes with a relatively wide electrochemical stability, high lithium ion conductivity and other desirable properties have been prepared by immobilizing N-n-butyl-N-ethylpyrrolidinium N,N-bis(trifluoromethane)sulfonimide-lithium N,N-bis(trifluoromethane)sulfonimide (Py24TFSI-LiTFSI), ionic liquid, IL, solutions in a poly(vinylidene fluoride)-hexafluoropropylene copolymer (PVdF-HFP) matrix. The addition of a discrete amount of ethylene and propylene carbonate (EC–PC), solvent mixture to the membranes resulted in an improvement of the ionic conductivity and in a stabilization of the interface with the lithium electrode. These IL-based gel type membranes can operate without degradation up to a temperature of 110 °C where they reach conductivity values of the order of 10−2 S cm−1. All these properties make these polymer electrolyte membranes of interest for applications as separators in advanced lithium batteries.  相似文献   

6.
A study is conducted of the performance of lithium iron(II) phosphate, LiFePO4, as a cathode material in a lithium secondary battery that features an ionic liquid electrolyte solution and a metallic lithium anode. The electrolyte solution comprises an ionic liquid of a N-methyl-N-alkyl-pyrrolidinium (alkyl = n-propyl or n-butyl) cation and either the bis(fluorosulfonyl)imide [(FSO2)2N] or bis(trifluoromethanesulfonyl)imide [(F3CSO2)2N] anion, together with 0.5 mol kg−1 of lithium bis(trifluoromethanesulfonyl)imide salt. For N-methyl-N-propyl-pyrrolidinium bis(fluorosulfonyl)imide, coin cells discharging at rates of C/10 and 4C yield specific capacities of 153 and 110 mAh g−1, respectively, at an average coulombic efficiency of 99.8%. This performance is maintained for over 400 cycles at 50 °C and therefore indicates that these electrolyte solutions support long-term cycling of both LiFePO4 and metallic lithium while, due to the negligible volatility of ionic liquids, surrounding the lithium in an inherently safe, non-flammable medium.  相似文献   

7.
A random poly(ethylene-co-acrylic acid) (PE-A) with an acrylic acid (AA) content of 5.0–20 mol% was functionalized by esterifying acrylic acid group with poly(ethylene glycol) monomethyl ether. Polyethylene oxide functional groups such as a pendant were introduced into the polyethylene backbone chain. The resulting polymer (PEGM-g-EAA) can be easily formed to a thin sheet and possesses the adhesion property such as gluing. Its thin film could absorb and hold a large quantity of the electrolyte solutions employed for the lithium batteries. The ionic conductivity of the PEGM-g-EAA gel electrolyte obtained with the starting PE-A with acrylic acid content of 9.0 mol% was a value of around 1.5 × 10−3 S cm−1 at 20 °C. The ionic conductivity results obtained for the network type gel, which was entangled with the present PE-A-based polymer, were 1.1 × 10−3 S cm−1 and 5.5 × 10−3 S cm−1 at 0 °C and 80 °C, respectively. The characteristics of good thermostability, transparency and good adhesion to the electrodes have also been demonstrated. As an example, the test cell consisted of the proposed polyolefin gel electrolyte, a LiCoO2 cathode and a lithium anode showed excellent charge/discharge characteristics.  相似文献   

8.
A new class of polymer electrolytes (PEs) based on an electrospun polymer membrane incorporating a room-temperature ionic liquid (RTIL) has been prepared and evaluated for suitability in lithium cells. The electrospun poly(vinylidene fluoride-co-hexafluoropropylene) P(VdF-HFP) membrane is activated with a 0.5 M solution of LiTFSI in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) or a 0.5 M solution of LiBF4 in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4). The resulting PEs have an ionic conductivity of 2.3 × 10−3 S cm−1 at 25 °C and anodic stability at >4.5 V versus Li+/Li, making them suitable for practical applications in lithium cells. A Li/LiFePO4 cell with a PE based on BMITFSI delivers high discharge capacities when evaluated at 25 °C at the 0.1C rate (149 mAh g−1) and the 0.5C rate (132 mAh g−1). A very stable cycle performance is also exhibited at these low current densities. The properties decrease at the higher, 1C rate, when operated at 25 °C. Nevertheless, improved properties are obtained at a moderately elevated temperature of operation, i.e. 40 °C. This is attributed to enhanced conductivity of the electrolyte and faster reaction kinetics at higher temperatures. At 40 °C, a reversible capacity of 140 mAh g−1 is obtained at the 1C rate.  相似文献   

9.
Composite membranes of poly(vinylidene fluoride-co-hexafluoropropylene) {P(VdF-HFP)} and different composition of silica have been prepared by electrospinning polymer solution containing in situ generated silica. These membranes are made up of fibers of 1–2 μm diameters. These fibers are stacked in layers to produce fully interconnected pores that results in high porosity. Polymer electrolytes were prepared by immobilizing 1 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate (DMC) in the membranes. The composite membranes exhibit a high electrolyte uptake of 550–600%. The optimum electrochemical properties have been observed for the polymer electrolyte containing 6% in situ silica to show ionic conductivity of 8.06 mS cm−1 at 20 °C, electrolyte retention ratio of 0.85, anodic stability up to 4.6 V versus Li/Li+, and a good compatibility with lithium metal resulting in low interfacial resistance. A first cycle specific capacity of 170 mAh g−1 was obtained when the polymer electrolyte was evaluated in a Li/lithium iron phosphate (LiFePO4) cell at 0.1 C-rate at 25 °C, corresponding to 100% utilization of the cathode material. The properties of composite membrane prepared with in situ silica were observed to be comparatively better than the one prepared by direct addition of silica.  相似文献   

10.
Non-flammable polymer gel electrolytes (NPGE) consisting of 1.0 mol dm−3 (=M) LiBF4/EC + DEC + TEP (55:25:20 volume ratio) + PVdF-HFP (EC: ethylene carbonate, DEC: diethyl carbonate, TEP: triethylphosphate, PVdF-HFP: poly(vinyledenefluoride-co-hexafluoropropylene)) have been developed for rechargeable lithium batteries. The effects of addition of Lewis-acid polymer (LAP) with different mole ratio in NPGE have been studied. The addition of LAP improved physico-chemical properties of NPGE, viz ionic conductivity and lithium ion transport number, as well as mechanical and thermal properties. The ionic conductivity of the gel electrolyte containing LAP reached that of the base solution electrolyte (1.0 M LiBF4/EC + DEC + TEP (55:25:20)) along with better mechanical properties. Interfacial resistance at Li-metal electrode/NPGE was also improved by introducing LAP in the gel.  相似文献   

11.
A polymer electrolyte was successfully fabricated for a room temperature operation lithium battery by cross-linking the mixture of oligomeric poly (ethylene glycol) dimethylether (PEGDME) and poly (ethylene glycol) diacrylate (PEGDA) with Li(CF3SO2)2N using electron beam irradiation. The maximum ionic conductivity achieved for the cross-linked solid polymer electrolyte (c-SPE) at room temperature was 2.1 × 10−4 S cm−1 and the lithium transport number of the electrolyte was around 0.2. The c-SPE showed no reaction heat with lithium metal up to 300 °C. The interface resistance of Li/c-SPE/Li at room temperature was about 45 Ω cm2, which is considerable lower than that of 210 Ω cm2 for Li/PEO10Li(CF3SO2)2N/Li. The electrochemical window of the polymer electrolyte was above 4 V (versus Li+/Li). The initial discharge capacity for the Li/SPE/LiFePO4-C cell was approximately 90 mAh g−1 for LiFePO4-C at 1/10 °C rate at room temperature and showed a good cyclability and a high coulombic efficiency of 99.2%.  相似文献   

12.
Lithium lanthanum titanate oxide (LLTO)/polyacrylonitrile (PAN) submicron composite fiber-based membranes were prepared by electrospinning dispersions of LLTO ceramic particles in PAN solutions. These ionic-conducting LLTO/PAN composite fiber-based membranes can be directly used as lithium-ion battery separators due to their unique porous structure. Ionic conductivities were evaluated after soaking the electrospun LLTO/PAN composite fiber-based membranes in a liquid electrolyte, 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). It was found that, among membranes with various LLTO contents, 15 wt.% LLTO/PAN composite fiber-based membranes provided the highest ionic conductivity, 1.95 × 10−3 S cm−1. Compared with pure PAN fiber membranes, LLTO/PAN composite fiber-based membranes had greater liquid electrolyte uptake, higher electrochemical stability window, and lower interfacial resistance with lithium. In addition, lithium//1 M LiPF6/EC/EMC//lithium iron phosphate cells containing LLTO/PAN composite fiber-based membranes as the separator exhibited high discharge specific capacity of 162 mAh g−1 and good cycling performance at 0.2 C rate at room temperature.  相似文献   

13.
One ether-functionalized guanidinium ionic liquid is used as new electrolytes for lithium battery. Viscosity, conductivity, behavior of lithium redox, chemical stability against lithium metal, and charge-discharge characteristics of lithium batteries, are investigated for the IL electrolytes with different concentrations of lithium salt. Though the cathodic limiting potential of the IL are 0.7 V vs. Li/Li+, the lithium plating and striping on Ni electrode can be observed in the IL electrolytes, and the IL electrolytes show good chemical stability against lithium metal. Li/LiCoO2 cells using the IL electrolytes without additives have good capacity and cycle property at the current rate of 0.2 C when the LiTFSI concentration is higher than 0.3 mol kg−1, and the cell using the IL electrolyte with 0.75 mol kg−1 LiTFSI owns good rate property. The activation energies of the LiCoO2 electrode for lithium intercalation are estimated, and help to analyze the factors determining the rate property.  相似文献   

14.
Gel polymer electrolyte films based on thermoplastic polyurethane (TPU)/poly(vinylidene fluoride) (PVdF) with and without in situ ceramic fillers (SiO2 and TiO2) are prepared by electrospinning 9 wt% polymer solution at room temperature. The electrospun TPU-PVdF blending membrane with 3% in situ TiO2 shows a highest ionic conductivity of 4.8 × 10−3 S cm−1 with electrochemical stability up to 5.4 V versus Li+/Li at room temperature and has a high tensile strength (8.7 ± 0.3 MPa) and % elongation at break (110.3 ± 0.2). With the superior electrochemical and mechanical performance, it is very suitable for application in polymer lithium ion batteries.  相似文献   

15.
Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N1134TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 × 10−3 S cm−1 at 25 °C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 × 10−3 S cm−1 at 25 °C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N1134TCM (2.48 × 10−3 S cm−1). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N1134TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species.  相似文献   

16.
The electrochemical properties of solvent-free, quaternary polymer electrolytes based on a novel polymeric ionic liquid (PIL) as polymer host and incorporating 1g13TFSI ionic liquid, LiTFSI salt and nano-scale silica are reported. The PIL-LiTFSI-1g13TFSI-SiO2 electrolyte membranes are found to be chemically stable even at 80 °C in contact with lithium anode and thermally stable up to 320 °C. Particularly, the quaternary polymer electrolytes exhibit high lithium ion conductivity at high temperature, wide electrochemical stability window, time-stable interfacial resistance values and good lithium stripping/plating performance. Batteries assembled with the quaternary polymer electrolyte at 80 °C are capable to deliver 140 mAh g−1 at 0.1C rates with very good capacity retention.  相似文献   

17.
A new family of polymeric ionic liquids having pyrrolidinium cation pendant units was synthesized from commercially available poly(diallyldimethylammonium) chloride. A simple anion exchange procedure was applied to the poly(diallyldimethylammonium) chloride using different salts such as LiTFSI, KPF6, LiBF4 and NaDBSA. The anion exchange reaction was quantitative as confirmed by NMR, FT-IR and titration experiments. Among these polymers, poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (TFSI) showed excellent performance as polymer matrix for polymer electrolyte compositions together with pyrrolidinium ionic liquid and lithium salt having a similar TFSI counter-anion. In this sense, free standing mechanically stable transparent polymer films showing an ionic conductivity higher than 10−4 S cm−1 at room temperature were prepared and characterized. Furthermore, the polymer electrolytes presented a wide electrochemical stability window (7.0 V) which makes them interesting candidates for solid-state lithium batteries.  相似文献   

18.
Nonwoven films of composites of thermoplastic polyurethane (TPU) with different proportion of poly(vinylidene fluoride) (PVdF) (80, 50 and 20%, w/w) are prepared by electrospinning 9 wt% polymer solution at room temperature. Then the gel polymer electrolytes (GPEs) are prepared by soaking the electrospun TPU-PVdF blending membranes in 1 M LiClO4/ethylene carbonate (EC)/propylene carbonate (PC) for 1 h. The gel polymer electrolyte (GPE) shows a maximum ionic conductivity of 3.2 × 10−3 S cm−1 at room temperature and electrochemical stability up to 5.0 V versus Li+/Li for the 50:50 blend ratio of TPU:PVdF system. At the first cycle, it shows a first charge-discharge capacity of 168.9 mAh g−1 when the gel polymer electrolyte (GPE) is evaluated in a Li/PE/lithium iron phosphate (LiFePO4) cell at 0.1 C-rate at 25 °C. TPU-PVdF (50:50, w/w) based gel polymer electrolyte is observed much more suitable than the composite films with other ratios for high-performance lithium rechargeable batteries.  相似文献   

19.
A new gel polymer electrolyte (GPE) is reported in this paper. In this GPE, blending polymer of poly(ethylene oxide) (PEO) with poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP)), doped with nano-Al2O3 and supported by polypropylene (PP), is used as polymer matrix, namely PEO-P(VdF-HFP)-Al2O3/PP. The performances of the PEO-P(VdF-HFP)-Al2O3/PP membrane and the corresponding GPE are characterized with mechanical test, CA, EIS, TGA and charge-discharge test. It is found that the performances of the membrane and the GPE depend to a great extent on the content of doped nano-Al2O3. With doping 10 wt.% nano-Al2O3 in PEO-P(VdF-HFP), the mechanical strength from 9.3 MPa to 14.3 MPa, the porosity of the membrane increases from 42% to 49%, the electrolyte uptake from 176% to 273%, the thermal decomposition temperature from 225 °C to 355 °C, and the ionic conductivity of corresponding GPE is improved from 2.7 × 10−3 S cm−1 to 3.8 × 10−3 S cm−1. The lithium ion battery using this GPE exhibits good rate and cycle performances.  相似文献   

20.
A SSC deposit has been prepared by flame spraying using Sm0.7Sr0.3CoO3−δ (SSC) powder synthesized by a solid-state reaction. A post-spray annealing treatment of the SSC deposit has been performed. The coating characterization includes: the electrical conductivity of the SSC deposit along the lamellar direction measured by a four-electrode D.C. approach, the microstructures of SSC powders and deposits characterized using X-ray diffraction and scanning electron microscopy, the oxygen stoichiometry in both the as-sprayed and annealed deposits and starting powder determined by redox titration. The results show that a significant oxygen deficiency (12%) occurs in the sprayed powder particles during high temperature flame spraying, leading to reduction of the electrical conductivity of the as-sprayed SSC deposit. It is found that oxygen can be recovered through post-spray annealing treatment. After annealing at 900 °C for 5 h or at 1100 °C for 10 h, the electrical conductivity of annealed SSC reaches 433 S cm−1 or 510 S cm−1 at 600 °C due to a sharp recovery of deficient oxygen and microstructural change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号