首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This paper introduced a one-dimensional analytical model to quantitatively examine the humidifying capacity of a Nafion™ membrane humidifier. Water permeability for the Nafion™ membrane was calculated, depending on the thickness of the Nafion™ membrane. Relative humidity for a carrier gas passed through the Nafion™ membrane humidifier was simulated at various gas flow rates, which showed good agreement with experimental data. Simulations were also conducted to predict humidity levels as a function of length and height of the gas flow channel. This analytical model can be used in future work to properly design Nafion™ membrane humidifiers for use in PEM fuel cell systems.  相似文献   

2.
The humidification of PEM fuel cells is critical for their performance and efficiency and for ensuring a long durability. In most PEM fuel cell systems for mobile applications membrane humidifiers are used to humidify the fresh air. In this process, the water contained in the cathode exhaust gas is used to increase the humidity of the supply air. Despite the simple design of membrane humidifiers, the simulation of the water transfer is difficult and so far there exist hardly any precise models to calculate the absorption and desorption processes. Common approaches that use the Sherwood number to determine the sorption rates cannot account for the influence of the local water content of the membrane. This ultimately leads to an inaccurate simulation of humidifier behavior, as these models cannot consider the fact that desorption is nearly ten times faster than absorption.In this study, an empirical formula for an accurate determination of the sorption rate is derived based on experimental data. This function accounts for the different absorption and desorption rates by finding a sorption rate coefficient as a function of the local membrane water content, temperature, pressure and flow velocity.Furthermore, a CFD model is derived from the geometry of a commercially available membrane humidifier, which is also investigated on a test bench. Using the experimental data, the CFD model is validated and it is shown that the developed sorption rate formula leads to good agreements between simulations and experiments at steady-state operating points of the humidifier.  相似文献   

3.
This paper presents an experimental study and model validation of an external membrane humidifier for PEM fuel cell humidification control. Membrane humidification behavior was investigated with steady-state and dynamic tests. Steady-state test results show that the membrane vapor transfer rate increases significantly with water channel temperature, air channel temperature, and air flow rate. Water channel pressure has little effect on the vapor transfer rate and thus can be neglected in the system modeling. Dynamic test results reveal that the membrane humidifier has a non-minimum phase (NMP) behavior, which presents extra challenges for control system design. Based on the test data, a new water vapor transfer coefficient for Nafion membrane was obtained. This coefficient increases exponentially with the membrane temperature. The test results were also used to validate a thermodynamic model for membrane humidification. It is shown that the model prediction agrees well with the experimental results. The validated model provides an important tool for external humidifier design and fuel cell humidification control.  相似文献   

4.
For high efficiency and long durability of proton exchange membrane fuel cells (PEMFCs), polymer electrolyte membranes should be kept wet. Reactant gases should be humidified on this account. For the humidification, the PEMFC system uses an external or internal humidifier as a part of balance of plants (BOPs). However, external humidifiers have many disadvantages such as parasitic power loss, system complexity, high cost and bulky volume. As such, efforts have been made to remove the external humidifier or replace it with an advanced humidifier. In this work, to remove a humidifier, humidification by exhaust gas recirculation is investigated by theoretical analysis and experiments with 5-cell stack of an active area 250 cm2. In the theoretical analysis, species conservation equations and energy conservation equation are solved to obtain the O2 concentration, stoichiometric ratio, humidity ratio, temperature, amount of condensed water and so on. With the theoretical results, experiments with 5-cell, 250 cm2 fuel cell stack were carried out in order to analyze the stack performance at the theoretical conditions of the cathode process stream of exhaust gas recirculation.  相似文献   

5.
In this study on humidifiers for polymer electrolyte membrane (PEM) fuel cell application, the experimental outcome of two air-to-air planar membrane humidifiers with three different internal flow patterns including cross, parallel and counter flows are investigated under isothermal and insulated boundary conditions. At all temperatures and flow rates, the conditions of higher performance, corresponding to highest water recovery ratio (WRR) and lowest dew point approach temperatures (DPAT), are encountered in the counter flow case, in contrary to the cross flow configuration. The insulation condition with dry inlet temperature at 30 °C and wet inlet temperature at 60 °C has a higher WRR index compared to isothermal condition at 60 °C but is lower than isothermal condition at 30 °C. The DPAT in humidifier with insulation condition is approximately equal to that obtained in isothermal condition at 60 °C but is much higher than what results in isothermal condition at 30 °C. It can be deduced that the temperature of the wet side inlet plays a key role in the humidifier performance.  相似文献   

6.
Water management is a crucial factor in determining the performance of proton exchange membrane fuel cell (PEMFC) for automotive application. The shell-and-tube water-to-gas membrane humidifier is useful for humidifying the PEMFC due to its good performance. Shell-and-tube water-to-gas membrane humidifiers have liquid water on one side of the tube wall and a dry gas on the other. In order to investigate humidifier performance, a two-dimensional dynamic model of a shell-and-tube water-to-gas membrane humidifier is developed. The model is discretized into three control volumes – shell, tube and membrane – in the cross-sectional direction to resolve the temperature and species concentration of the humidifier. For validation, the dew point temperature of the simulation result is compared with that of experimental data and shows good agreement with only a slight difference. The distribution of humidification characteristics can be captured using the discretization along the air-flow direction. The humidification performance of two different flow configurations, counter and parallel, are compared under various operating conditions and geometric parameters. Finally, the dynamic response of the humidifier at the step-change of various air flow rates is investigated. These results suggest that the model can be used to optimize the inlet flow humidity of a PEMFC.  相似文献   

7.
In this study, the numerical models are developed to investigate the influence of obstacle shape and number on performance of a planar porous membrane humidifier for proton exchange membrane fuel cell (PEMFC) application. Dew point of dry side outlet and water transfer rate are applied as evaluation parameters of the performance regardless of pressure drop. A dimensionless number named performance evaluation criteria (PEC) is calculated for all models. The higher value of PEC indicates the higher heat transfer rate with lower pressure drop. In humidifier with one rectangular obstacle compared with the simple humidifier, water transfer rate increases by 7.28%. The highest values of water transfer rate, dew point and PEC, also the greatest values of pressure drop are in humidifiers with rectangular, triangular and circular obstacles, in that order. When there is restriction in securing pumping power in fuel cell system, circular obstacle is the best choice. With considering the pressure drop, using one obstacle does not offer any advantage because the PEC is less than one (0.898). At least two obstacles are needed to have PEC number greater than one, consequently an efficient performance. An increment in number of obstacles causes an increment in water transfer rate, dew point and PEC.  相似文献   

8.
Durability and reliability are still major challenges of vehicular polymer electrolyte membrane fuel cell (PEMFC) systems. With exhaust gas recirculation on both the anode and cathode sides, two important functions can be achieved: the voltage clamping in low current density, and the self-humidification without any external humidifiers. The former restrains catalyst decay in small load working conditions, and the latter is beneficial for improving the cold-start ability. In this study, dynamic performances and stable characteristics of a fuel cell system with dual exhaust gas recirculation are firstly experimentally studied using an orthogonal test method. System parameters, including humidification temperature of cathode external humidifier, fresh air stoichiometric ratio (SR), current density, cathode and anode recirculation pump speeds, are regarded as key factors in the experiments based on the testing conditions of the test-bench. Two four-factor and three-level orthogonal tables are designed, and the effects of key factors on system performance indices (average cell voltage, relative humidity (RH) at cathode inlet, high frequency resistance (HFR), oxygen concentrations at cathode inlet and outlet, and the concentration difference between these two positions) are investigated. Results show that: (1) with the cathode recirculation, the cell voltage can be reduced in low current densities by coordinately adjusting the recycled gas flow and reducing fresh air SR; (2) with the dual recirculation, the fuel cell membrane can be well hydrated, and system performance only shows 3% reduction compared with a system with an external humidifier; (3) the difference between the oxygen molar concentration at the inlet and outlet of cathode gas channels becomes small using dual recirculation.  相似文献   

9.
The humidification of the cathode inlet air is of great significance to maintain the internal water dynamic balance and improve the performance for fuel cells. In this paper, a numerical simulation of the effect of flow channel geometry on the water transport capacity and pressure loss is carried out in a planar membrane humidifier. The intrinsic influence mechanism is explained by theoretical analysis of the simulation results. Five cross-sectional shapes of flow channels including equilateral triangle, isosceles triangle, square, rectangle and semi-circle are designed, and three geometric factors of centroid height, perimeter and hydraulic diameter are extracted to characterize the different shapes. The results show that there is a strong correlation between the water transport performance and the centroid height of the flow channel cross-section, and the correlation coefficient is 0.999, which is much higher than 0.547 for perimeter and 0.533 for hydraulic diameter. The study also found that the Darcy–Weisbach formula is more accurate than the Hagen–Poiseuille equation in predicting pressure loss because it introduces the Poiseuille number, which depends on the cross-sectional geometry, to modify the Darcy friction factor. Among the five proposed flow channel pressure loss, the Darcy–Weisbach formula has a maximum prediction deviation of 2.5%, while that of Hagen–Poiseuille equation is 11.8%. The research conclusions can provide theoretical guidance for the design of planar membrane humidifiers.  相似文献   

10.
Combining the oxidant and coolant flow in an air-cooled proton exchange membrane fuel cell can significantly simplify the fuel cell design. In this paper, an air-cooled PEM fuel cell stack with an open cathode flow field, which supplied the oxidant and removed the heat produced in the fuel cell, was fabricated and tested. The influence of different operating parameters on cell voltage performance and the overall cell ohmic resistance, such as cell temperature and airflow rate, was investigated. The cell temperature and the temperature difference between the cell and the hydrogen humidifier were shown to serve important roles in reducing the fuel cell ohmic resistance. The test results also showed a noteworthy temperature gradient between each cell of a 5-cell stack. A hydrophilic treatment of the cathode flow field channels was demonstrated to be an effective way to mitigate water management issues caused at elevated operating temperatures.  相似文献   

11.
Experiments conducted on a commercial fuel cell humidifier determined that the water recovery ratio is the best performance metric because it considers the water supplied to the humidifier. Data from a porous polymer membrane with a hydrophilic additive were analyzed under a heat and mass transfer model. The membrane showed low water uptake profiles at relative humidities below 80 percent, and a steep increase in water uptake above threshold.The experiments were conducted with samples of the porous membrane in a single cell humidifier at isothermal conditions at temperatures of 25, 50, and 75 °C. The water recovery ratio for the porous membrane decreased with increasing flow rate.The model was verified experimentally and its predictions agreed with the measured data.  相似文献   

12.
《Journal of power sources》2006,159(2):968-978
The operation of polymer electrolyte membrane fuel cells (PEMFCs) with dry feeds has been examined with different fuel cell flow channel designs as functions of pressure, temperature and flow rate. Auto-humidified (or self-humidifying) PEMFC operation is improved at higher pressures and low gas velocities where axial dispersion enhances “back-mixing” of the product water with the dry feed. We demonstrate auto-humidified operation of the channel-less, self-draining fuel cell, based on a stirred tank reactor; data is presented showing auto-humidified operation from 25 to 115 °C at 1 and 3 atm. Design and operating requirements are derived for the auto-humidified operation of the channel-less, self-draining fuel cell. The auto-humidified self-draining fuel cell outperforms a fully humidified serpentine flow channel fuel cell at high current densities. The new design offers substantial benefits for simplicity of operation and control including: the ability to self-drain reducing flooding, the ability to uniformly disperse water removing current gradients and the ability to operate on dry feeds eliminating the need for humidifiers. Additionally, the design lends itself well to a modular design concept.  相似文献   

13.
《Journal of power sources》2006,156(2):211-223
A computational fuel cell dynamics framework is used to develop a unified water transport equation for a proton exchange membrane fuel cell (PEMFC). Various modes of water transport, i.e., diffusion, convection and electro-osmotic drag, are incorporated in the unified water transport equation. The water transport model is then applied to elucidate water management in three-dimensional fuel cells with dry-to-low humidified inlet gases after its validation against available experimental data for dry oxidant and fuel streams. An internal circulation of water with the aid of counter-flow design is found to be of vital importance for low-humidity operation, for example, in the portable application of a PEMFC without an external humidifier. The general features of water transport in PEMFCs are discussed to show various water transport regimes of practical interest, such as anode water loss, cathode flooding, and the equilibrium condition of water at the channel outlets, particularly for limiting situations where anode and cathode water profiles acquire an equilibrium state. From the practical point of view, the effects of the flow arrangement, membrane thickness, and inlet gas humidity as important determinants of fuel cell performance are also analyzed to elucidate fuel cell water transport characteristics.  相似文献   

14.
This paper presents an experimental setup for the measurement of water transfer in membrane humidifiers for automotive polymer electrolyte membrane (PEM) fuel cells at different process conditions. This setup was used to determine steady-state water permeation through perfluorinated sulfonic acid (PFSA)-based polymer membranes. The process conditions were varied within a relative humidity in the feed stream of RH = 30–90 %, absolute pressures of p = 1.25–2.5 bar, and temperatures of T = 320–360 K. The examined membranes are Nafion® membranes of different thicknesses (Nafion® 211, 212 and 115) and an experimental composite membrane manufactured by W. L. Gore & Associates. It was found that the overall water permeance is affected by both the mass transfer resistance of the membrane and the resistances in the boundary layers of the adjacent gas streams. The overall permeance is a strong function of water activity, with high levels of relative humidity showing the highest overall permeance. The absolute pressure only affects the overall permeance by affecting the diffusion in the boundary layers. Lower pressures are preferable for high overall water permeances. Increasing temperatures favor diffusion in the membrane and the boundary layers but lead to lower sorption into the membrane. The thicker Nafion® membranes show lower overall permeance at higher temperatures, while the overall permeance of the composite membrane shows no dependency on the temperature. Investigation of membrane humidifiers in counter-, co-, and cross-flow shows that the flow configuration in our setup has very little impact on the water flux in the humidifier.  相似文献   

15.
16.
The performance of a proton exchange membrane fuel cell (PEMFC) is seriously changed by the humidification capability available when equipped with a PTFE® membrane. Typically, the humidification of a fuel cell is carried out by means of an internal or external humidifier. A membrane humidifier is applied to the external humidification of residential power generation fuel cell due to its convenience and high performance. In this study, a static model is constructed to understand the physical phenomena of the membrane humidifier in terms of geometric parameters and operating parameters. The model utilizes the concept of planar type heat exchanger with mass transport through the membrane. The model is constructed with FORTRAN in a Simulink® environment for consistency with other components of the model we previously developed. The results show that the humidity of the wet gas and the channel length, the membrane thickness and wet gas inlet humidity are critical parameters affecting the performance of the humidifier.  相似文献   

17.
In a proton exchange membrane fuel cell (PEMFC) water management is one of the critical issues to be addressed. Although the membrane requires humidification for high proton conductivity, water in excess decreases the cell performance by flooding. In this paper an improved strategy for water management in a fuel cell operating with low water content is proposed using a parallel serpentine-baffle flow field plate (PSBFFP) design compared to the parallel serpentine flow field plate (PSFFP). The water management in a fuel cell is closely connected to the temperature control in the fuel cell and gases humidifier. The PSBFFP and the PSFFP were evaluated comparatively under three different humidity conditions and their influence on the PEMFC prototype performance was monitored by determining the current density–voltage and current density–power curves. Under low humidification conditions the PEMFC prototype presented better performance when fitted with the PSBFFP since it retains water in the flow field channels.  相似文献   

18.
Bipolar plate design and its flow field shape have an important effect on the fuel cell performance. In this work, a FORTRAN program has been developed to investigate the effects of the channel width, the number of turns of the spiral channel and the flow direction on the reactants consumption in a proton exchange membrane fuel cell (PEMFC) with a spiral flow field design. The governing equations are discretized using the finite volume method in cylindrical coordinates. The results show that the channel-rib width ratio influences the cell performance; the higher ratio, the more important contact area between the channel and the GDL, the more reactants quantity seeped to the GDL and more uniform reactants distribution is. The increasing the spiral channel turns number improves the reactants distribution uniformity. The channel spiral shape engenders a centrifugal force which enhances the cell performances in the case when the reactants are injected from the external side of the spiral channel and ejected from its internal one.  相似文献   

19.
Proper water management in polymer electrolyte membrane (PEM) fuel cells is critical to achieve the potential of PEM fuel cells. Membrane electrolyte requires full hydration in order to function as proton conductor, often achieved by fully humidifying the anode and cathode reactant gas streams. On the other hand, water is also produced in the cell due to electrochemical reaction. The combined effect is that liquid water forms in the cell structure and water flooding deteriorates the cell performance significantly. In the present study, a design procedure has been developed for flow channels on bipolar plates that can effectively remove water from the PEM fuel cells. The main design philosophy is based on the determination of an appropriate pressure drop along the flow channel so that all the liquid water in the cell is evaporated and removed from, or carried out of, the cell by the gas stream in the flow channel. At the same time, the gas stream in the flow channel is maintained fully saturated in order to prevent membrane electrolyte dehydration. Sample flow channels have been designed, manufactured and tested for five different cell sizes of 50, 100, 200, 300 and 441 cm2. Similar cell performance has been measured for these five significantly different cell sizes, indicating that scaling of the PEM fuel cells is possible if liquid water flooding or membrane dehydration can be avoided during the cell operation. It is observed that no liquid water flows out of the cell at the anode and cathode channel exits for the present designed cells during the performance tests, and virtually no liquid water content in the cell structure has been measured by the neutron imaging technique. These measurements indicate that the present design procedure can provide flow channels that can effectively remove water in the PEM fuel cell structure.  相似文献   

20.
建立气-气增湿器的数学理论模型,并基于Amesim软件建立燃料电池增湿器及空气系统仿真模型,从燃料电池系统层面分析干湿侧不同温度、压力、水含量等输入条件下的干侧出口空气的湿度变化情况,并采用水转移率(water vapor transfer rate,WVTR)对增湿器增湿性能进行评价,结果表明此模型可进行前期验证,能较好地预测汽车运行过程中增湿器的动态响应特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号