首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
Amorphous RuO2·xH2O and a VGCF/RuO2·xH2O nanocomposite (VGCF = vapour-grown carbon fibre) are prepared by thermal decomposition. The morphology of the materials is investigated by means of scanning electron microscopy. The electrochemical characteristics of the materials, such as specific capacitance and rate capability, are investigated by cyclic voltammetry over a voltage range of 0–1.0 V at various scan rates and with an electrolyte solution of 1.0 M H2SO4. The specific capacitance of RuO2·xH2O and VGCF/RuO2·xH2O nanocomposite electrodes at a scan rate of 10 mV s−1 is 410 and 1017 F g−1, respectively, and at 1000 mV s−1 are 258 and 824 F g−1, respectively. Measurements of ac impedance spectra are made on both the electrodes at various bias potentials to obtain a more detailed understanding of their electrochemical behaviour. Long-term cycle-life tests for 104 cycles shows that the RuO2·xH2O and VGCF/RuO2·xH2O electrodes retain 90 and 97% capacity, respectively. These encouraging results warrant further development of these electrode materials towards practical application.  相似文献   

2.
A novel solid state route has been successfully developed for the synthesis of nano-scale hydrous ruthenium oxide (denoted as RuO2·xH2O). The procedure involves directly mixing RuCl2·xH2O with alkali to form RuO2·xH2O in a mortar at room temperature. Transmission electron microscopy (TEM) and N2 adsorption–desorption measurement indicate that the RuO2·xH2O particle is approximately 30–40 nm with mesoporous structure. The crystalline structure and the electrochemical properties of RuO2·xH2O have been systematically explored as a function of annealing temperature. At lower temperatures, the RuO2·xH2O powder was found in an amorphous phase and the maximum capacitance of 655 F g−1 was obtained by annealing at 150 °C. Higher temperatures (exceeding 175 °C) presumably converted amorphous phase into crystalline one and the corresponding specific capacitance dropped rapidly from 547 F g−1 at 175 °C to 87 F g−1 at 400 °C. Also, the dependence of electrochemical performance on annealing conditions of RuO2·xH2O was investigated by electrical impedance spectroscopy (EIS) study.  相似文献   

3.
RuO2 nanoparticles are synthesized by Instant method using Li2CO3 as stabilizing agent, under microwave irradiation at 60 °C and investigated for the anodic oxygen evolution reaction (OER) and for their supercapacitance properties in 0.5 M H2SO4 medium. Structural and morphological characterizations of RuO2 are investigated by in situ X-ray diffraction (XRD), thermogravimetric analysis (TG-DTA), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDS) and Raman spectroscopy. The TEM images of as prepared material show the uniform distribution of RuO2 nanoparticles with mean diameter of ca. 1.5 nm. Analysis on as prepared material indicates the structural formula as [RuO2·2.6H2O] 0.7H2O with low crystallinity. The influence of annealing temperature on RuO2 is studied in light of electrocatalytic activity for oxygen evolution reaction (OER) and capacitance. Electrochemical performances of RuO2 electrodes are followed by current-potential curves, galvanostatic charge-discharge cycles and evolved oxygen measurements. The amount of oxygen gas evolved during the OER by the crystalline RuO2 is found to be consistent with the electrical energy supplied to the catalyst. The cyclic voltammogram of RuO2 exhibits the typical capacitance behavior with highly reversible nature. The specific capacitance of hydrous RuO2 is found to be 737 F g−1 at the scan rate of 2 mV s−1, by the balanced transport of proton through the structural water and electron transport along dioxo bridges, which makes a suitable material for energy storage. The specific capacitance decreases with increase in the crystallinity of RuO2. The present study shows the potential method to synthesize rapid and uniform nano particles of RuO2 for water electrolysis and supercapacitors.  相似文献   

4.
Crystalline tungsten oxide mixtures, WO3-WO3·0.5H2O, prepared by microwave-assisted hydrothermal (MAH) synthesis at 180 °C for various periods, show capacitive-like behavior at 200 mV s−1 and CS ≈ 290 F g−1 at 25 mV s−1 in 0.5 M H2SO4 between −0.6 and 0.2 V. Oxide rods can be obtained via the MAH process even when the synthesis time is only 0.75 h while WO3·0.5H2O sheets with poor capacitive performances are obtained by a normal hydrothermal synthesis process at the same temperature for 24 h. The aspect ratio of tungsten oxide rods is found to increase with prolonging the MAH time while all oxides consist of WO3 and WO3·0.5H2O. The oxide mixtures prepared by the MAH method with annealing in air at temperatures ≤400 °C show promising performances for electrochemical capacitors (ECs). Due to the narrow working potential window of the oxide mixtures, an aqueous EC of the asymmetric type, consisting of a WO3-WO3·0.5H2O anode and a RuO2·xH2O cathode, with a potential window of 1.6 V is demonstrated in this work, which shows the device energy and power densities of 23.4 W kg−1 and 5.2 kW kg−1, respectively.  相似文献   

5.
Chemically prepared polyaniline is tested for its supercapacitive behaviour in an aqueous electrolyte of 1.0 M H2SO4. In order to improve the cycleability of the polyaniline electrode, it is made into a composite with Nafion. This composite electrode shows improved cycleability and higher specific capacitance compared with a pure polyaniline electrode. It is therefore used as a matrix for the electrochemical deposition of hydrous RuO2. The resulting ternary composite electrode has a high specific capacitance of 475 F g−1 at 100 mV s−1 and 375 F g−1 at 1000 mV s−1 in the voltage range of −0.2 to 0.8 V versus Ag/AgCl. All three types of electrode are characterized by cyclic voltammetry and impedance anaylsis.  相似文献   

6.
The difference in capacitive performance between high and low surface area RuO2 electrodes, synthesized with and without a mesoporous silica template, respectively, was investigated in aqueous solutions of sulfuric acid and sulfates by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). RuO2 synthesized with the template was crystalline and the formation of the mesoporous structure with a 6.5 nm diameter was confirmed using a transmission electron microscope and the nitrogen adsorption and desorption isotherm. From the CV at the scan rate of 1 mV s−1, the specific capacitance of the high surface area electrode in H2SO4(aq) was determined to be 200 F g−1. The high surface area RuO2 has a three times higher BET specific surface area (140 m2 g−1) than the low surface area sample (39 m2 g−1). Introducing the mesoporous structure was proved effective for increasing the capacitance per mass of the RuO2, though not all the surface functions as a capacitor. Both the CV and EIS suggest that by increasing the charging rate or frequency, the mesoporous structure of the electrode leads to a lower capacitance decrease (higher capacitance retention) than the low surface area electrode. The EIS also indicates that the response time of the capacitor is hardly influenced by the presence of the mesoporous structure.  相似文献   

7.
NH4V3O8·0.2H2O is synthesized by sodium dodecyl sulfonate (SDS) assisted hydrothermal method and its electrochemical performance is investigated. The as-prepared material is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared (IR) spectrum, differential scanning calorimetry and thermal gravimetry (DSC/TG), cyclic voltammetry (CV), and charge-discharge cycling test. The results show a pure NH4V3O8·0.2H2O phase with flake-like morphology is obtained and the average flake thickness is about 150 nm. The NH4V3O8·0.2H2O electrode has a good lithium ion insertion/extraction ability with the highest discharge capacity of 225.9 mAh g−1 during 1.8-4.0 V versus Li at the constant current density of 15 mA g−1. After 30 cycles, it still maintains a high discharge capacity of 209.4 mAh g−1, demonstrating good cyclic stability. Interestingly, at the discharge process a new (NH4)LixV3O8·0.2H2O compound is formed due to the new lithium ion from lithium metal anode.  相似文献   

8.
Nanosized Ni3(Fe(CN)6)2(H2O) was prepared by a simple co-precipitation method. The electrochemical properties of the sample as the electrode material for supercapacitor were studied by cyclic voltammetry (CV), constant charge/discharge tests and electrochemical impedance spectroscopy (EIS). A specific capacitance of 574.7 F g−1 was obtained at the current density of 0.2 A g−1 in the potential range from 0.3 V to 0.6 V in 1 M KNO3 electrolyte. Approximately 87.46% of specific discharge capacitance was remained at the current density of 1.4 A g−1 after 1000 cycles.  相似文献   

9.
Ruthenium dioxide is deposited on stainless steel (SS) substrate by galvanostatic oxidation of Ru3+. At high current densities employed for this purpose, there is oxidation of water to oxygen, which occurs in parallel with Ru3+ oxidation. The oxygen evolution consumes a major portion of the charge. The oxygen evolution generates a high porosity to RuO2 films, which is evident from scanning electron microscopy studies. RuO2 is identified by X-ray photoelectron spectroscopy. Cyclic voltammetry and galvanostatic charge–discharge cycling studies indicate that RuO2/SS electrodes possess good capacitance properties. Specific capacitance of 276 F g−1 is obtained at current densities as high as 20 mA cm−2 (13.33 A g−1). Porous nature of RuO2 facilitates passing of high currents during charge–discharge cycling. RuO2/SS electrodes are thus useful for high power supercapacitor applications.  相似文献   

10.
The spark plasma sintering (SPS) technique was successfully used to mold a hydrous amorphous RuO2electrode without any additives and binders. At the cyclic voltammetry (CV) scan rate of 1 mV s−1, the electrochemical capacitances of the RuO2 electrodes are 600-700 F g−1 for the entire electrode. An increase in the SPS current during the compaction led to the crystallization and dehydration of RuO2, which in turn, resulted in a significant decrease in its capacitance. There is room to improve the rate properties as we observed a steep drop in the capacitance when the CV scan rate was raised.  相似文献   

11.
Pure LiFePO4 was synthesized by heating an amorphous LiFePO4. The amorphous LiFePO4 obtained through lithiation of FePO4·xH2O by using oxalic acid as a novel reducing agent at room temperature. FePO4·xH2O was prepared through co-precipitation by employing FeSO4·7H2O and H3PO4 as raw materials. X-ray diffraction (XRD), scanning electron microscopy (SEM) observations showed that LiFePO4 composites with fine particle sizes between 100 nm and 200 nm, and with homogenous sizes distribution. The electrochemical performance of LiFePO4 powder synthesized at 500 °C were evaluated using coin cells by galvanostatic charge/discharge. The synthesized LiFePO4 composites showed a high electrochemical capacity of 166 mAh g−1 at the 0.1C rate, and possessed a favorable capacity cycling maintenance at the 0.1C, 0.2C, 0.5C and 1C rate.  相似文献   

12.
Carbon coated LiFePO4/C cathode material is synthesized with a novel sol-gel method, using cheap FePO4·2H2O as both iron and phosphorus sources and oxalic acid (H2C2O4·2H2O) as both complexant and reductant. In H2C2O4 solution, FePO4·2H2O is very simple to form transparent sols without controlling the pH value. Pure submicrometer structured LiFePO4 crystal is obtained with a particle size ranging from 100 to 500 nm, which is also uniformly coated with a carbon layer, about 2.6 nm in thickness. The as-synthesized LiFePO4/C sample exhibits high initial discharge capacity 160.5 mAh g−1 at 0.1 C rate, with a capacity retention of 98.7% after 50th cycle. The material also shows good high-rate discharge performances, about 106 mAh g−1 at 10 C rate. The improved electrochemical properties of as-synthesized LiFePO4/C are ascribed to its submicrometer scale particles and low electrochemical impedance. The sol-gel method may be of great interest in the practical application of LiFePO4/C cathode material.  相似文献   

13.
Graphene nanosheets/polyaniline nanofibers (GNS/PANI) composites are synthesized via in situ polymerization of aniline monomer in HClO4 solution. The PANI nanofibers homogeneously coating on the surface of GNS greatly improve the charge transfer reaction. The GNS/PANI composites exhibit better electrochemical performances than the pure individual components. A remarkable specific capacitance of 1130 F g−1 (based on GNS/PANI composites) is obtained at a scan rate of 5 mV s−1 in 1 M H2SO4 solution compared to 402 F g−1 for pure PANI and 270 F g−1 for GNS. The excellent performance is not only due to the GNS which can provide good electrical conductivity and high specific surface area, but also associate with a good redox activity of ordered PANI nanofibers. Moreover, the GNS/PANI composites present excellent long cycle life with 87% specific capacitance retained after 1000 charge/discharge processes. The resulting composites are promising electrode materials for high-performance electrical energy storage devices.  相似文献   

14.
The effect of hydrous RuO2 (RuO2·xH2O) in anode on the performance of direct methanol fuel cells (DMFCs) was examined by voltammetry, methanol stripping analysis, electrochemical impedance spectroscopy, polarization measurement and chronopotentiometry. The results showed that, compared with the DMFC with conventional structures, the dynamic response and quasi-steady state performance of the RuO2·xH2O-introduced DMFCs were significantly improved. The DMFC with RuO2·xH2O layer (ROL) sandwiched between anode catalyst layer and gas diffusion layer exhibited better quasi-steady state performance than those either with ROL sandwiched between anode catalyst layer and electrolyte membrane or with RuO2·xH2O uniformly distributed in anode catalyst layer. The maximum power density of the DMFC with this novel structure was 16% higher than the DMFC with the conventional structure. Moreover, the dynamic response of this RuO2·xH2O-introduced cell was more stable during 250-hour of operation when compared with that of the conventional cell.  相似文献   

15.
The electrochemical reactivity of the layered titanium hydrogeno phosphate Ti(HPO4)2·H2O versus lithium has been studied. Lithium intercalation occurs at ∼2.5 V with low polarization, leading to a new lithiated Ti(III) phase, LiTi(HPO4)2·H2O. Ti(HPO4)2·H2O exhibits a reversible capacity of 80 mAh g−1 in the voltage window 1.8–3.5 V at C/10 rate. The stable reversible capacity reveals that the presence of H2O lattice is not affecting the electrochemical reaction. The reversibility of the reaction is demonstrated by extracting lithium from LiTi(HPO4)2·H2O and the host structure is intact. The electrochemical behaviour of dehydrated phases Ti(HPO4)2 and TiP2O7 has also been investigated.  相似文献   

16.
A series of cathode materials with molecular notation of xLi[Li1/3Mn2/3]O2·(1 − x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤ x ≤ 0.9) were synthesized by combination of co-precipitation and solid state calcination method. The prepared materials were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques, and their electrochemical performances were investigated. The results showed that sample 0.6Li[Li1/3Mn2/3]O2·0.4Li[Ni1/3Mn1/3Co1/3]O2 (x = 0.6) delivers the highest capacity and shows good capacity-retention, which delivers a capacity ∼250 mAh g−1 between 2.0 and 4.8 V at 18 mA g−1.  相似文献   

17.
A series of Ag+-ion conducting composites consisting of glasses of the AgI–Ag2O–B2O3 system and hard Al2O3 powder matrix were synthesized by a high-pressure route (pressure 7.7 GPa, temperature 100–200 °C). The composition of the glasses was described by the general formula: xAgI·(100 − x)(0.667Ag2O·0.333B2O3), where x = 40, 50 and 60. Alumina powder (2 μm average grain size) was added to the glass in 50/50 proportions (by volume).  相似文献   

18.
Submicron-sized LiNi1/3Co1/3Mn1/3O2 cathode materials were synthesized using a simple self-propagating solid-state metathesis method with the help of ball milling and the following calcination. A mixture of Li(ac)·2H2O, Ni(ac)2·4H2O, Co(ac)2·4H2O, Mn(ac)2·4H2O (ac = acetate) and excess H2C2O4·2H2O was used as starting material without any solvent. XRD analyses indicate that the LiNi1/3Co1/3Mn1/3O2 materials were formed with typical hexagonal structure. The FESEM images show that the primary particle size of the LiNi1/3Co1/3Mn1/3O2 materials gradually increases from about 100 nm at 700 °C to 200–500 nm at 950 °C with increasing calcination temperature. Among the synthesized materials, the LiNi1/3Co1/3Mn1/3O2 material calcined at 900 °C exhibits excellent electrochemical performance. The steady discharge capacities of the material cycled at 1 C (160 mA g−1) rate are at about 140 mAh g−1 after 100 cycles in the voltage range 3–4.5 V (versus Li+/Li) and the capacity retention is about 87% at the 350th cycle.  相似文献   

19.
In the present work, a nanostructured manganese dioxide material was synthesized by a sol–gel method starting with manganese acetate (MnAc2·4H2O) and citric acid (C6H8O7·H2O) raw materials, and characterized by X-ray diffraction, infrared spectroscopic and transmission electron microscope techniques. The electrochemical properties and the influence of temperature on supercapacitive behaviors of the nano-MnO2 electrode in 1 M LiOH electrolyte were investigated using electrochemical methods. Experimental results show that the MnO2 electrode can exhibit an excellent pseudocapacitive behavior in 1 M LiOH electrolyte, and a high specific capacitance of 317 F g−1 can be obtained at a charge/discharge current rate of 100 mA g−1 and at the temperature of 25 °C. We found that temperature has a crucial influence on the discharge specific capacitance of the electrode. The specific capacitance at 25 °C is higher than that at 15 or 35 °C.  相似文献   

20.
Single-phase lithium nickel manganese oxide, LiNi0.5Mn0.5O2, was successfully synthesized from a solid solution of Ni1.5Mn1.5O4 that was prepared by means of the solid reaction between Mn(CH3COO)2·4H2O and Ni(CH3COO)2·4H2O. XRD pattern shows that the product is well crystallized with a high degree of Li–M (Ni, Mn) order in their respective layers, and no diffraction peak of Li2MnO3 can be detected. Electrochemical performance of as-prepared LiNi0.5Mn0.5O2 was examined in the test battery by charge–discharge cycling with different rate, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The cycling behavior between 2.5 and 4.4 V at a current rate of 21.7 mA g−1 shows a reversible capacity of about 190 mAh g−1 with little capacity loss after 100 cycles. High-rate capability test shows that even at a rate of 6C, stable capacity about 120 mAh g−1 is retained. Cyclic voltammetry (CV) profile shows that the cathode material has better electrochemical reversibility. EIS analysis indicates that the resistance of charge transfer (Rct) is small in fully charged state at 4.4 V and fully discharged state at 2.5 V versus Li+/Li. The favorable electrochemical performance was primarily attributed to regular and stable crystal structure with little intra-layer disordering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号