首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
In this paper the properties of Mg–Al alloys in relation to hydrogen storage are reviewed. The main topics of this paper are materials preparation, hydrogen capacity, thermodynamics of hydride formation, and the kinetics of hydride formation and decomposition.  相似文献   

2.
《Journal of power sources》2001,92(1-2):70-80
Li–Mg alloy electrodes are prepared by two methods: (1) direct-alloying through the melting of mole percent specific mixtures of Li and Mg metal under vacuum and (2) the kinetically-controlled vapor formation and deposition (KCVD) of a Li–Mg alloy on a substrate. It is found that processing conditions greatly influence the microstructures and surface morphologies, and hence, the electrochemical properties of the Li–Mg alloy electrodes. When applying the KCVD technique, the composition of each prepared alloy is determined by independently varying the temperature of the molten lithium, the temperature of magnesium with which the lithium interacts, and the temperature of the substrate on which the intimately mixed Li–Mg mixture is deposited. Here, the required temperature for lithium induced Mg vaporization is more than 200°C below the magnesium melting point. The effect of these variable temperatures on the microstructure, morphology, and electrochemical properties of the vapor-deposited alloys has been studied. The diffusion coefficients for lithium in the Li–Mg alloy electrodes prepared by the KCVD method are in the range 1.2×10−7 to 5.2×10−7 cm2 s−1 at room temperature, two to three orders of magnitude larger than those in other lithium alloy systems (e.g. 6.0×10−10 cm2 s−1 in LiAl). These observations suggest that Li–Mg alloys prepared by the KCVD method might be used effectively to prevent dendrite formation, improving the cycleability of lithium electrodes and the rechargeability of lithium batteries as a result of the high diffusion coefficient of lithium atoms in the Li–Mg alloy. Li–Mg alloy electrodes also appear to show not only the potential for higher rate capabilities (power densities) but also for larger capacities (energy densities) which might considerably exceed those of lithiated carbon or Sn-based electrodes for lithium batteries.  相似文献   

3.
Four different M2+–Mg–Al hydrotalcite (HT) materials were investigated for their effect on biohydrogen enhancement, where M2+ is Fe and/or Zn. HTs were synthesized by the coprecipitation method and characterized by infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). The effect of Fe–Zn–Mg–Al HTs dose (0–833 mg/L) on hydrogen production was investigated in batch tests using sucrose-fed anaerobic mixed culture at 37 °C. The best catalytic activity was observed on Mg–Al HT at 167 mg/L with the maximum hydrogen yield of 2.30 ± 0.37 mol H2/mol sucrose, which was 44% higher than the control. The major metabolites detected in the test were acetic acid (3.6 g/L), butyric acid (4.1 g/L), and lactic acid (0.5 g/L). The basic properties of the different catalysts played an important role in stimulating or inhibiting the activity of hydrogen producing bacteria. Calcined Mg–Al HT did not promote biohydrogen production, suggesting that the catalytic enhancement was related to immobilization of bacteria in the electrostatically charged HT interlayers.  相似文献   

4.
Abstract

Five kinds of Pb–Mg–Al–B alloys with B atomic fraction of 0, 1·84, 3·62, 5·36 and 7·06% were prepared by induction melting. The corrosion behaviour of Pb–Mg–Al–B in 3·5 wt-%NaF solution was investigated by immersion tests, neutral salt spray and electrochemical measurements. The surface morphology and corrosion products of alloys were measured using scanning electron microscopy (SEM), X-ray diffraction and X-ray photoelectron spectroscopy. Results show that the Pb–Mg–Al–B alloy with 5·36%B shows the best corrosion resistance; the volume fraction and distribution of Mg2Pb, Mg17Al12 and other phases affect the corrosion resistance significantly; the major corrosion products are Mg17Al12, Pb, PbO, Al2O3, etc., and Mg is apt to form a microgalvanic cell with Mg2Pb (Mg2Pb–Mg) in corrosive solution, and a bit of product of MgF2 film has a role to protect alloys; and the different corrosion resistances are caused by the different microstructure of alloys with different B additions.  相似文献   

5.
The cycling behavior of the La0.7Mg0.3Ni2.65-xCo0.75Mn0.1AlxLa0.7Mg0.3Ni2.65-xCo0.75Mn0.1Alx(x=0,0.3)(x=0,0.3) alloy electrodes was systematically investigated by XRD, SEM, EIS, XPS and AES measurements, and the function of Al in the La–Mg–Ni-based alloys and the reasons for the improvement of the cycling stability of the alloy electrode with Al were discussed. Results show that the cycling behavior of the La0.7Mg0.3Ni2.35Co0.75Mn0.1Al0.3La0.7Mg0.3Ni2.35Co0.75Mn0.1Al0.3 alloy electrode can be divided into three stages, i.e., the pulverization and Mg oxidation stage, the Mg oxidation and La and/or Al oxidation stage, and the La and Al oxidation and Al oxide film protection stage. The improvement of the cycling stability of the alloy electrode with Al can be ascribed to two factors. One is the decrease in the pulverization of the alloy particles during charge/discharge cycling due to the alloy with Al undergoes a smaller cell volume expansion and contraction. The other is the increase in the anti-oxidation/corrosion due to the formation of a dense Al oxide film during cycling, which is believed to be the most important reason for the improvement of the cycling stability of the La–Mg–Ni–Co–Mn–Al-type alloy electrodes.  相似文献   

6.
Supercritical water gasification (SCWG) is a promising process for hydrogen production from biomass. In this study, a series of Ni–Mg–Al catalysts with different Mg/Al molar ratios has been synthesized by a co-precipitation method for hydrogen production by SCWG of glucose. Effects of Mg addition on the catalytic activity, hydrothermal stability and anti-carbon performance of alumina supported nickel catalyst were investigated. The highly dispersed nickel catalysts prepared by co-precipitation could greatly enhance the gasification efficiency of glucose in supercritical water. Among the tested Ni–Mg–Al catalysts, NiMg0.6Al1.9 showed the highest catalytic activity with the hydrogen yield of 11.77 mmol/g (912% as that of non-catalytic test). NiMg0.6Al1.9 also showed the best hydrothermal stability probably due to the formation of MgAl2O4. Mg could efficiently improve the anti-carbon ability of Ni–Al catalyst by inhibiting the formation of graphite carbon. It is also confirmed that MgO supported nickel catalyst is not suitable for SCWG process owing to the difficulty on nickel oxides reduction in the precursors and the phase change of MgO to Mg(OH)2 under the hydrothermal condition.  相似文献   

7.
8.
Structure changes during hydrogenation are observed in pure Mg, Mg2Ni intermetallic (I) and Mg eutectic alloy – 23.5 wt.% Ni (E). Samples were prepared by (i) ball-milling and compacting (alloys I and E) and (ii) by mould casting (Mg and alloy E). Phase composition was checked by SEM and XRD. It was found that the hydrogenated cast alloy I and ball-milled alloy I hydrogenated below the transition temperature Ttr = 508 K contained a much higher amount of low-temperature un-twinned phase LT1 than the ball-milled alloy I hydrogenated above Ttr. It was shown that micro-twinned phase LT2 slows down the rate of hydrogen desorption. Persistent changes of morphology were observed in all materials after the first hydrogen charging cycle which may explain the so-called activation of Mg-based hydrogen-storage materials described in the literature.  相似文献   

9.
Magnesium hydride (MgH2) is a promising candidate as a hydrogen storage material. However, its hydrogenation kinetics and thermodynamic stability still have room for improvement. Alloying Mg with Al has been shown to reduce the heat of hydrogenation and improve air resistance, whereas graphite helps accelerating hydrogenation kinetics in pure Mg. In this study, the effects of simultaneous Al alloying and graphite addition on the kinetics and air-exposure resistance were investigated on the Mg60Al40 system. The alloys were pulverized through high-energy ball milling (hereinafter HEBM). We tested different conditions of milling energy, added graphite contents, and air exposure times. Structural characterization was conducted via X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). H2 absorption and desorption properties were obtained through volumetry in a Sieverts-type apparatus and Differential Scanning Calorimetry (DSC). The desorption activation energies were calculated using DSC curves through Kissinger analysis. Mg60Al40 with 10 wt% graphite addition showed fast activation kinetics, even after 2 years of air exposure. Graphite addition provided a catalytic effect on ball-milled Mg–Al alloys by improving both absorption and desorption kinetics and lowering the activation energy for desorption from 189 kJ/mol to 134 kJ/mol. The fast kinetics, reduced heat of reaction, and improved air resistance of these materials make them interesting candidates for potential application in hydride-based hydrogen storage tanks.  相似文献   

10.
Nitrogen-incorporated lithium silicophosphate (LiSiPON) thin-film electrolytes, which contain two glass-forming elements, are fabricated by sputtering from a (1−x)Li3PO4·xLi2SiO3 target in a nitrogen reactive plasma. The results of impedance measurements show that the activation energy for conduction decreases as the Si content increases, which leads to an increase in the ionic conductivity of the films. It is suggested that these improvements in the electrical properties of the films are due to the combined effect of the mixed former and nitrogen incorporation. It appears that the decomposition potential of the electrolyte film in contact with Pt is about 5.5 V.  相似文献   

11.
A layered double hydroxide (LDH) precursor with a hydrotalcite-like structure containing Ni/Mg/Al cations was prepared. A series of Ni catalysts containing mixed-oxides and spinel phases were then obtained through thermal treatment of the LDH precursor. X-ray diffraction (XRD), transmission electron microscopy (TEM), and temperature-programmed reduction (TPR) revealed that the LDH derived Ni catalysts have well-dispersed nickel phases upon reduction. The thermal treatment temperatures have noticeable effects on the specific surface area, pore volume, phase transformation, particle size, and reducibility of the catalysts. Thermal treatment temperatures up to 700 °C promote the generation of mesopores which facilitate an increase in specific area and pore volume. Beyond 700 °C sintering occurs, mesopores collapse, and specific area and pore volume decrease. High thermal treatment temperatures favor the phase transformation to spinel solid solutions and the particle size growth. Metal-support interaction is enhanced but reducibility is hindered due to the formation of spinel solid solution phases. The LDH derived Ni catalysts were tested for landfill gas conversion at 750 °C and have shown excellent activity and stability in terms of methane conversion. At gas hourly space velocity (GHSV) of 240,000 h−1 and pressure of 1 atm, 81% methane conversion was achieved during a 48 h test period without apparent catalyst deactivation.  相似文献   

12.
Mg1.5Ti0.5−xZrxNi (x = 0, 0.1, 0.2, 0.3, 0.4), Mg1.5Ti0.3Zr0.1Pd0.1Ni and Mg1.5Ti0.3Zr0.1Co0.1Ni alloys were synthesized by mechanical alloying and their electrochemical hydrogen storage characteristics were investigated. X-ray diffraction studies showed that all the replacement elements (Ti, Zr, Pd and Co) perfectly dissolved in the amorphous phase and Zr facilitated the amorphization of the alloys. When the Zr/Ti ratio was kept at 1/4 (Mg1.5Ti0.4Zr0.1Ni alloy), the initial discharge capacity of the alloy increased slightly at all the ball milling durations. The further increase in the Zr/Ti ratio resulted in reduction in the initial discharge capacity of the alloys. The presence of Zr in the Ti-including Mg-based alloys improved the cyclic stability of the alloys. This action of Zr was attributed to the less stable and more porous characteristics of the barrier hydroxide layer in the presence of Zr due to the selective dissolution of the disseminated Zr-oxides throughout the hydroxide layer on the alloy surface. Unlike Co, the addition of Pd into the Mg–Ti–Zr–Ni type alloy improved the alloy performance significantly. The positive contribution of Pd was assumed to arise from the facilitated hydrogen diffusion on the electrode surface in the presence of Pd. As the Zr/Ti atomic ratio increased, the charge transfer resistance of the alloy decreased at all the depths of discharges. Co and Pd were observed to increase the charge transfer resistance of the Mg–Ti–Zr–Ni alloys slightly.  相似文献   

13.
《Journal of power sources》2001,92(1-2):244-249
To improve the cycle performance of spinel LiMn2O4 as the positive electrode of 4 V lithium secondary batteries, the spinel oxysulfide Li1.02Mg0.1Mn1.9O3.99S0.01 is synthesized by a sol–gel method using adipic acid as a chelating agent. The structural and electrochemical properties of the synthesized material are examined. Highly crystallized Li1.02Mg0.1Mn1.9O3.99S0.01 is synthesized at 750°C in an oxygen atmosphere. Both cation and anion doping of spinel lithium manganese oxides are very effective for improving the cycle performance of lithium batteries.  相似文献   

14.
An attempt to prepare solid solutions in the system of LiNiO2, LiMnO2 and Li2MnO3 was performed by heating metal acetates. The solid solutions between end members LiNiO2 and Li2MnO3 can be successfully prepared in the overall compositional ranges. Both the structure and capacity were compared based on Rietveld analysis and electrochemical investigation on solid solutions between LiNiO2 and Li2MnO3. The result showed that the cationic disorder as well as capacity was closely related to the ratio of Li, Mn and Ni in formula. The investigation of chronopotentiogram and ex situ XRD on the solid solutions indicated that the complex phase transitions in LiNiO2 during delithiation were strongly suppressed with low Mn content (Mn/(Mn+Ni) ratio was 0.1 or 0.2) and completely suppressed with the ratio more than 0.5.  相似文献   

15.
La–Mg–Ni alloys are potential candidates for hydrogen storage materials. In this study, mechanical alloying with subsequent annealing under an argon atmosphere at 973 K for 0.5 h, were used to produce La2-xMgxNi7 alloys (x = 0, 0.25, 0.5, 0.75, 1). Shaker type ball mill was used. An objective of the present study was to investigate an influence of amount of Mg in alloy on electrochemical, hydrogenation and dehydrogenation properties of La–Mg–Ni materials. X-ray diffraction analyses revealed formation of material with multi-phase structure. Obtained materials were studied by a conventional Sievert's type device at 303 K. It was observed that electrochemical discharge capacity and gaseous hydrogen storage capacity of La–Mg–Ni alloys increases with Mg content to reach maximum for La1.5Mg0.5Ni7 alloy. Moreover, all of La–Mg–Ni alloys were characterized by improved hydrogen sorption kinetics in comparison to La–Ni alloy.  相似文献   

16.
The effect of Ce and Ni contents on the glass-forming ability (GFA) of Mg–Ce–Ni system in the Mg-rich corner of Mg–Ce–Ni system is revealed. Ce is more advantageous for the GFA of Mg-rich Mg–Ce–Ni system than Ni, and the lowest Ce content is ∼5 at.% to obtain the fully amorphous alloy. Amorphous alloy with the highest Mg content, Mg90Ce5Ni5, was obtained by melt-spinning. With the amorphous alloy as precursor, nanostructure multi-phases compositae was prepared by crystallizing it in hydrogenation process. The compositae with reversible hydrogen storage capacity of 5.3 wt.% shows much faster kinetics and lower MgH2 desorption activation energy than those of induction-melt Mg90Ce5Ni5 alloy. Both in situ formed nanosized Mg2Ni and CeH2.73 act as effective catalysts and significantly improve the hydrogen storage properties of MgH2.  相似文献   

17.
The effect of different kinds of carbon on the hydrogen sorption kinetics by magnesium–carbon composites was analyzed. To prepare magnesium-based composites by ball milling, graphite and carbon nanomaterials (hereinafter CNM) obtained by the electroexplosion technique were used. Phase composition and structure state of the as-milled and hydrogenated magnesium–carbon and magnesium–nickel–carbon composites have been investigated. It was found the crystallite size in the Mg–CNM composite is smaller in comparison with the magnesium–graphite and magnesium–graphite–nickel mixtures. The CNM additives to magnesium essentially improve the hydrogen sorption kinetics. It results in a reduction of hydrogen sorption temperature. The noticeable hydrogen absorption took place already at a temperature of 363 K. The hydrogen capacity was about 5 wt% for magnesium ball milled with CNM additives.  相似文献   

18.
Mg–Al alloy was prepared by sintering and mechanical alloying, and the effects of graphene (Gp), TiF3 and Gp/titanium (III) fluoride (TiF3) on the hydrogen storage properties of the Mg–Al alloy were studied. The results show that Gp and TiF3 could improve the hydrogen storage properties of Mg–Al alloy. In particular, Gp and TiF3 showed good synergistic effect for enhancing the hydrogen storage properties of Mg–Al alloy. For example, when 1.0 wt% of H2 was absorbed/desorbed, the hydrogen adsorption/desorption temperature of the Mg–Al alloy and Mg–Al-M (M = Gp, TiF3, and TiF3@Gp) composites were 241/343 °C, 185/310 °C, 229/292 °C and 159/280 °C, respectively. For the Mg–Al alloy, the apparent activation energy was 176.5 kJ mol?1, and it decreased to 139.8 kJ mol?1, 171.6 kJ mol?1, and 94.3 kJ mol?1, with the addition of Gp, TiF3 and TiF3@Gp composites, respectively. Evidently, the comprehensive hydrogen storage properties of Mg–Al alloy were improved remarkably under the synergistic effect of Gp and TiF3.  相似文献   

19.
The hydrogen absorption/desorption (A/D) kinetics of hydrogen storage alloys Mg2−xAgxNi (x=0.05, 0.1) prepared by hydriding combustion synthesis in two-phase (αβ) region in the temperature range of 523–573K have been investigated. The hydriding/dehydriding (H/D) reaction rate constants were extracted from the time-dependent A/D curves. The obtained hydrogen A/D kinetic curves were fitted using various rate equations to reveal the mechanism of the H/D processes. The relationships of rate constant with temperature were established. It was found that the three-dimensional diffusion process dominates the hydrogen A/D. The apparent activation energies of 63±5 and 61±7kJ/molH2 in Mg1.95Ag0.05Ni alloy and 52±2kJ/molH2 and of 50±2kJ/molH2 in Mg1.9Ag0.1Ni alloy were found for the H/D processes in two-phase (αβ) coexistence region from 523 to 573K, respectively. With the increasing content of Ag in Ag–Mg–Ni alloys, the apparent energy was decreased and the reaction rate was faster. It is reasonable to explain that the hydriding kinetics of Mg2Ni was improved by adding Ag.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号