首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Microfibers of kraft lignin blended with poly(ethylene oxide) (PEO) were produced by electrospinning of the solution of lignin and high molecular weight poly(ethylene oxide) (PEO) in alkaline water. Interactions between lignin and PEO in alkaline aqueous solutions create association complexes, which increases the viscosity of the solution. The effect of polymer concentration, PEO molecular weight, and storage time of solution before spinning on the morphology of the fibers was studied. It showed that after one day the viscosity dropped and fiber diameter decreased. Results from the solutions in alkaline water and N,N‐dimethylformamide (DMF) with different polymer concentrations were compared. The 7 wt % of (Lignin/PEO: 95/5 wt/wt) in alkaline aqueous solution was successfully spun and the ratio of PEO in lignin/PEO mixture could be further reduced. In comparison, higher concentrations were needed to prepare a spinning solution in DMF and fiber diameters were in a much smaller range. The final target of spinning lignin is to produce carbonized fibers. Fibers spun from aqueous solutions had lower PEO content, which is a big advantage for the carbonization process as it reduces the challenges regarding melting of the fibers or void creation during carbonization. Furthermore, the larger diameter of these fibers inhibits disintegration of the carbonized fibers, which happens due to the mass loss during the process. © 2014 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41260.  相似文献   

2.
Bi-component fibers typically combine multiple functions that arise from at least two distinct components. As a result, these fibers can incorporate carbon nanotubes, which impart specific and controllable mechanical, electrical, and thermal transport properties to the fibers. Using gel spinning, sheath-core polyacrylonitrile–polyacrylonitrile/carbon nanotube bi-component fibers with a diameter of less than 20 μm and carbon nanotube concentrations of up to 10 wt% were produced. In these fibers, the carbon nanotubes were well dispersed and aligned along the fiber axis. The fibers exhibited a tensile strength as high as 700 MPa, and a tensile modulus as high as 20 GPa, as well as enhanced electrical and thermal conductivities when compared to the fibers without carbon nanotubes.  相似文献   

3.
Mechanical characterization of the first generation of softwood kraft lignin‐based carbon fibers (CF) was carried out. The single‐fiber tensile tests of filaments with different diameters and length were performed to evaluate stiffness and strength of carbon fibers. The average mechanical properties were measured as follows: tensile strength of approximately 300 MPa, the elastic modulus of 30 GPa and a strain at failure within interval of 0.7–1.2%. The fiber strength data was evaluated by the two‐parameter Weibull statistics and parameters of this distribution were obtained. Although strength of the produced fibers is still significantly lower than that of commercially available, the experimental results and predictions based on Weibull statistics show a fairly good fit. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3689–3697, 2013  相似文献   

4.
Kraft lignin obtained from the pulping of wood is an interesting new precursor material for carbon fiber production because of its high carbon content and ready availability. However, continuous spinning of softwood kraft lignin (SKL) has been impossible because of its insufficient softening characteristics and neat hardwood kraft lignin (HKL) has required extensive pretreatments to enable fiber formation. Softwood kraft lignin permeate (SKLP) and hardwood kraft lignin permeate (HKLP), fractionated by membrane filtration, were continuously melt spun into fibers. To improve the spinnability of SKL and HKL, HKLP was added as a softening agent. SKL‐ and HKL‐based fibers were obtained by adding 3–98 wt % HKLP. A suitable temperature range for spinning was 20–85°C above the Tg of the lignin samples, and this range gave a flawless appearance according to the SEM analysis. Smooth, homogeneous fibers of SKLP, HKLP, and SKL with HKLP were successfully processed into solid carbon fibers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
An acetylated softwood kraft lignin was dry-spun into precursor fibers and successfully processed into carbon fibers with a tensile strength exceeding most values reported in prior studies on lignin-based carbon fibers. Limited acetylation of lignin hydroxyl groups enabled dry-spinning of the precursor using acetone (solvent) followed by thermo-oxidative stabilization. Resulting carbon fibers (∼7 μm diameter) displayed a tensile modulus, strength, and strain-to-failure values of 52 ± 2 GPa, 1.04 ± 0.10 GPa, and 2.0 ± 0.2%, respectively. Because of solvent diffusion during dry-spinning, fibers displayed a crenulated surface that can provide a larger specific interfacial area for enhanced fiber/matrix bonding in composite applications.  相似文献   

6.
Biopitch-based general purpose carbon fibers: Processing and properties   总被引:1,自引:0,他引:1  
Eucalyptus tar pitches are generated on a large scale in Brazil as by-products of the charcoal manufacturing industry. They present a macromolecular structure constituted mainly of phenolic, guaiacyl, and siringyl units common to lignin. The low aromaticity (60-70%), high O/C atomic ratios (0.20-0.27%), and large molar mass distribution are peculiar features which make biopitches behave far differently from fossil pitches. In the present work, eucalyptus tar pitches are evaluated as precursors of general purpose carbon fibers (GPCF) through a four-step process: pitch pre-treatment and melt spinning, and fiber stabilization and carbonization. Homogeneous isotropic fibers with a diameter of 27 μm were obtained. The fibers had an apparent density of 1.84 g/cm3, an electrical resistivity of 2 × 10−4 Ω m, a tensile strength of 130 MPa, and a tensile modulus of 14 GPa. Although the tensile properties advise against using the produced fibers as structural reinforcement, other properties give rise to different potential applications, as for example in the manufacture of activated carbon fibers or felts for electrical insulation.  相似文献   

7.
This study investigates the possibility of using a post-spinning plasticization and stretching process to eliminate suspected property-limiting factors in polyacrylonitrile-based carbon fibers. This process was performed with the intention of removing surface defects (to improve tensile strength), attenuating fiber diameter (to promote more uniform heat treatment), and reducing molecular dipole interactions (to facilitate further molecular orientation). Among the various organic and inorganic solutions tested, treatment using aqueous dimethyl formamide (DMF) offered far and away the best properties and was therefore selected for further testing. Tested individually (as single filaments), fibers exposed to 80% DMF for 10 s gave the highest precursor values of elastic modulus (9.07 GPa) and tensile strength (675 MPa). While fibers treated in 80% DMF gave a 73% improvement in elastic modulus and a 53% improvement in tensile strength over as-received PAN, limitations in sample preparation and carbonization necessitated a reduction in DMF concentration (to 30%) to allow extraction of individual carbon fibers for tensile testing. Despite this compromise, results for fibers carbonized at 1000°C ultimately showed a 32% improvement in carbon fiber elastic modulus and a 14% improvement in carbon fiber tensile strength over regularly prepared carbon fibers. These results show that, to a certain extent, improvements in PAN precursor properties can translate to corresponding improvements in subsequently produced carbon fibers. Additional characterization using wide angle X-ray scattering (WAXS) and scanning electron microscopy (SEM) suggests that these improvements are due in part to improved lateral order as well as the successful elimination of surface defects and prevention of skin-core formation.  相似文献   

8.
Lignin, a highly aromatic biopolymer extracted as a coproduct of wood pulping, was investigated as a suitable precursor for carbon fibers. Lignin was chemically modified and blended with poly(lactic acid) (PLA) biopolymer before melt spinning into lignin fibers. The chemical modification of raw lignin involved butyration to form ester functional groups in place of polar hydroxyl (–OH) groups, which enhanced the miscibility of lignin with PLA. Fine fibers were extracted and spooled continuously from lignin/PLA blends with an overall lignin concentration of 75 wt.%. The influence of chemical modification and physical blending of lignin with PLA on the resulting fiber was studied by analyzing the microstructure of the fibers using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The influence of blend composition on the phase behavior was studied by differential scanning calorimetry (DSC). The effect of composition on the mechanical properties was studied by tensile tests of the lignin/PLA blend fibers. The thermal stability and carbon yield of the blended fibers with different concentrations of lignin were characterized by thermogravimetric analysis (TGA). The microstructure analysis of carbon fibers produced from lignin/PLA blends revealed composition dependent microporous structures inside the fine fibers.  相似文献   

9.
A high‐temperature lubricant genioplast pellets (GPPS) was used in order to improve the processing behavior of poly(ether ether ketone) (PEEK) resin and high‐performance PEEK fibers were produced by melt‐spinning. The rheological properties of spinning material, morphology, mechanical, and thermal properties of PEEK fibers were characterized by using a polymer capillary rheometer, scanning electron microscopy, single fiber electronic tensile strength tester, wide‐angle X‐ray diffraction and thermal gravimetric analyzer, respectively. The results indicated that the introduction of lubricant GPPS decreased the melting viscosity of PEEK resin and improved spinnability of PEEK resin without sacrificing its thermal properties. The filaments are cylindrical with smooth surface and uniform diameter. The optimized content of GPPS was determined to be 1.0 wt% by balancing the decreased torque and changes of the mechanical properties. The strength and modulus of PEEK fibers were 420 MPa and 3.6 GPa, respectively. This should be due to the improvement in spinnability, followed by the enhancements in the orientation and crystallization of PEEK fibers in the process of drawing and annealing. POLYM. ENG. SCI., 53:2254–2260, 2013. © 2013 Society of Plastics Engineers  相似文献   

10.
The possibility of producing carbon fiber from an industrial corn stover lignin was investigated in the present study. As‐received, high‐ash containing lignin was subjected to methanol fractionation, acetylation, and thermal treatment prior to melt spinning and the changes in physiochemical and thermal properties were evaluated. Methanol fractionation removed most of the impurities in the raw lignin and also selectively removed the molecules with high melting points. However, neither methanol fractionation nor thermal treatment rendered melt‐spinnable precursors. The precursors were highly viscous and decomposed easily at low temperatures, attributed to the presence of H, G phenolic units, and abundant hydroxycinnamate groups in herbaceous lignin. A two‐step acetylation of methanol fractionated lignin greatly improved the mobility of lignin, while enhancing the thermal stability of the precursor during melt‐spinning. Fourier Transform Infrared and 2D‐NMR analysis showed that the contents of phenolic and aliphatic hydroxyls, as well as the hydroxycinnamates, decreased in the acetylated precursors. The optimum precursor was a partially acetylated lignin with a glass transition temperature of 85 °C. Upon oxidative stabilization and carbonization, the carbon fibers with an average tensile strength of 454 MPa and modulus of 62 GPa were obtained. The Raman spectroscopy showed the ID/IG ratio of the carbon fiber was 2.53. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45736.  相似文献   

11.
Carbon fibers have been processed from gel spun polyacrylonitrile copolymer on a continuous carbonization line at Georgia Tech (GT) with a tensile strength in the range of 5.5–5.8 GPa, and tensile modulus in the range of 354–375 GPa. This combination of strength and modulus is the highest for any continuous fiber reported to date, and the gel spinning route provides a pathway for further improvements in strength and modulus for mass production of carbon fibers. At short gauge length, fiber tensile strength was as high as 12.1 GPa, which is the highest value ever reported for a PAN based carbon fiber. Structure analysis shows random flaws of about 2 nm size, which results in limiting tensile strength of higher than 20 GPa. Inter-planar turbostratic graphite shear modulus in high strength carbon fibers is 30 GPa, while in graphite the corresponding value is only 4 GPa.  相似文献   

12.
Polyacrylonitrile (PAN) and PAN/carbon nanotube (PAN/CNT) fibers were manufactured through dry‐jet wet spinning and gel spinning. Fiber coagulation occurred in a solvent‐free or solvent/nonsolvent coagulation bath mixture with temperatures ranging from ?50 to 25°C. The effect of fiber processing conditions was studied to understand their effect on the as‐spun fiber cross‐sectional shape, as well as the as‐spun fiber morphology. Increased coagulation bath temperature and a higher concentration of solvent in the coagulation bath medium resulted in more circular fibers and smoother fiber surface. as‐spun fibers were then drawn to investigate the relationship between as‐spun fiber processing conditions and the drawn precursor fiber structure and mechanical properties. PAN precursor fiber tows were then stabilized and carbonized in a continuous process for the manufacture of PAN based carbon fibers. Carbon fibers with tensile strengths as high as 5.8 GPa and tensile modulus as high as 375 GPa were produced. The highest strength PAN based carbon fibers were manufactured from as‐spun fibers with an irregular cross‐sectional shape produced using a ?50°C methanol coagulation bath, and exhibited a 61% increase in carbon fiber tensile strength as compared to the carbon fibers manufactured with a circular cross‐section. POLYM. ENG. SCI., 55:2603–2614, 2015. © 2015 Society of Plastics Engineers  相似文献   

13.
Summary Copolymers of acrylonitrile and vinyl bromide, with ca 4% (by weight) of vinyl bromide, are used as precursors for carbon fibers. The precursor fibers can be stabilized in remarkably short time intervals (15 – 20 min), without fiber damage, and result in carbon fibers (at 1400°C) of high quality: tensile strength 3,000 MN/m2, modulus 290 GN/m2, density 1.7 g/cm3. The chemistry behind these findings is discussed.  相似文献   

14.
Equi‐component blends of polyacrylonitrile (PAN) and lignin, i.e., with a lignin content as large as 50 wt %, were successfully used as precursors to produce carbon fibers. Rheological measurements demonstrated that increasing lignin content in spinning solution reduced shear viscosity and normal stress, indicating a decrease of viscoelastic behavior. This was confirmed by Fourier transform infrared results that show no discernable chemical reaction or crosslinking between PAN and lignin in the solution. However, the resulting carbon fibers display a large ID/IG ratio (by Raman spectroscopy) indicating a larger disordered as compared to that from pure PAN. The macro‐voids in the lignin/PAN blend fibers typically generated during wet‐spinning were eliminated by adding lignin in the coagulant bath to counter‐balance the out‐diffusion of lignin. Carbon fibers resulting from lignin/PAN blends with 50 wt % lignin content displayed a tensile strength and modulus of 1.2 ± 0.1 and 130 ± 3 GPa, respectively, establishing that the equi‐component wet‐spun L/P‐based carbon fibers possessed tensile strength and modulus higher than 1 and 100 GPa. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45903.  相似文献   

15.
Isotactic polypropylene hollow fibers were produced by melt spinning. Spinning speeds up to 1880 m/min were used, and sample hollowness (percentage void in cross section) ranged from 0 to 69%. The fiber samples were characterized using dynamic mechanical analysis, birefringence, tensile testing, and differential scanning calorimetry. The hollow fibers were found to have higher crystallinity, orientation, and strength than the analogous solid fibers. In general, the polymer orientation in a hollow fiber was larger than the orientation in a solid fiber, even when the spinning speed for the latter was much larger. For a fixed outer diameter, increasing the hollowness improved fiber properties. However, as hollowness was further increased, fiber properties declined slightly. At a given percentage hollowness, increased spinning speed increased modulus and tenacity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1759–1772, 2002  相似文献   

16.
Carbon fibers were produced from linear low density polyethylene (LLDPE) instead of commonly used precursors, such as viscose rayon, mesophase pitch and polyacrylonitrile (PAN). Cross-linked fibers were produced at various temperatures, times and stress conditions during a sulfuric acid treatment using LLDPE fibers obtained from dry-wet spinning. The effects of cross-linking were analyzed using a range of characterization techniques, such as differential scanning calorimetry, color change, fourier transform infrared spectroscopy, elemental analysis, density, scanning electron microscopy, and single filament mechanical properties. The carbonization process of cross-linked fibers was carried out at 950 °C for 5 min in a nitrogen atmosphere. The carbon fibers with the best mechanical properties were obtained from the cross-linked fiber with the highest tensile modulus. In particular, the carbon fibers with the best mechanical properties (tensile strength and tensile modulus of 1.65 GPa and 110 GPa, respectively), similar to commercial-grade carbon fiber, were obtained from the cross-linked fiber that had undergone a carbonization process with a stress of 0.25 MPa after an acid treatment for 150 min at 140 °C and a stress of 0.26 MPa.  相似文献   

17.
In this work, pyrolytic lignin (PL) was thermally co-treated with polyethylene terephthalate (PET) to produce carbon fiber precursor. The produced PL-PET precursors were thoroughly characterized and analyzed, and then being processed into carbon fiber. It was found that a novel precursor, rather than their physical blending, was formed by the thermal co-treatment, indicating there were strong interactions between PL and PET. The novel PL-PET precursors had enhanced thermal properties and rheological characteristics, therefore are more suitable for processing into better carbon fibers based on melt-spinning method. In this study, the precursor fibers derived from the co-treatment of PL and 5% PET were also stretched under tension during stabilization step to reduce the fiber diameter and improve molecular orientation. The resulting carbon fibers with an average diameter of 12.6 μm had the tensile strength of up to 1220 MPa. This work demonstrated that PET could be used to improve the processability and quality of lignin-based carbon fiber when it is chemically bonded with lignin-based precursor. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48843.  相似文献   

18.
19.
This article describes a new gel‐spinning process for making high‐strength poly(ethylene oxide) (PEO) fibers. The PEO gel‐spinning process was enabled through an oligomer/polymer blend in place of conventional organic solvents, and the gelation and solvent‐like properties were investigated. A 92/8 wt% poly(ethylene glycol)/PEO gel exhibited a melting temperature around 45°C and was highly stretchable at room temperature. Some salient features of a gel‐spun PEO fiber with a draw ratio of 60 are tensile strength at break = 0.66 ± 0.04 GPa, Young's modulus = 4.3 ± 0.1 GPa, and a toughness corresponding to 117 MJ/m3. These numbers are significantly higher than those previously reported. Wide‐angle x‐ray diffraction of the high‐strength fibers showed good molecular orientation along the fiber direction. The results also demonstrate the potential of further improvement of mechanical properties. POLYM. ENG. SCI., 54:2839–2847, 2014. © 2014 Society of Plastics Engineers  相似文献   

20.
This study focuses on the performance characteristics of wood/short carbon fiber hybrid biopolyamide11 (PA11) composites. The composites were produced by melt‐compounding of the fibers with the polyamide via extrusion and injection molding. The results showed that mechanical properties, such as tensile and flexural strength and modulus of the wood fiber composites were significantly higher than the PA11 and hybridization with carbon fiber further enhanced the performance properties, as well as the thermal resistance of the composites. Compared to wood fiber composites (30% wood fiber), hybridization with carbon fiber (10% wood fiber and 20% carbon fiber) increased the tensile and flexural modulus by 168% and 142%, respectively. Izod impact strength of the hybrid composites exhibited a good improvement compared to wood fiber composites. Thermal properties and resistance to water absorption of the composites were improved by hybridization with carbon fiber. In overall, the study indicated that the developed hybrid composites are promising candidates for high performance applications, where high stiffness and thermal resistance are required. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43595.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号