首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Development of low cost adsorbent for pesticide retention is an important area of research in environmental sciences. The present study reports the sorption potential of coal fly ash, a waste from power stations, for removal of metribuzin, metolachlor and atrazine from water. Batch sorption method was used to study the sorption of herbicides from water. The amount of herbicides sorbed increased with increase in the amount of fly ash in the suspension. The maximum capacity of the fly ash to adsorb metribuzin, metolachlor and atrazine was found to be 0.20, 0.28 and 0.38 mg/g by Freundlich equation and 0.56, 1.0 and 3.33 mg/g by Langmuir equation. Freundlich adsorption equation better explained the results of herbicides sorption in fly ash as regression coefficient (R2) values were higher from Freundlich equation than the Langmuir equation. Adsorption isotherms were L-type suggesting that the herbicide sorption efficiency of fly ash depend on the initial concentration of herbicide in the solution and maximum removal of herbicide was observed at concentrations less than 10 μg/ml. The results of this study have implications in using the fly ash for removal of these herbicides from industrial and agricultural waste water and can find use as a material in the preparation of biobeds to minimize environmental contamination from pesticide use.  相似文献   

2.
Adsorption of phenol, hydroquinone, m-cresol, p-cresol and p-nitrophenol from aqueous solutions onto high specific area activated carbon cloth has been studied. The effect of ionization on adsorption of these ionizable phenolic compounds was examined by studying the adsorption from acidic, basic and natural pH solutions. Kinetics of adsorption was followed by in situ UV spectroscopy over a period of 90 min. First-order rate law was found to be valid for the kinetics of adsorption processes and the rate constants were determined. The highest rate constants were obtained for the adsorption from solutions at the natural pH. The lowest rate constants were observed in basic solutions. The rate constants decreased in the order p-nitrophenol approximately m-cresol>p-cresol>hydroquinone approximately phenol. Adsorption isotherms were derived at 30 degrees C and the isotherm data were treated according to Langmuir, Freundlich and Tempkin isotherm equations. The goodness of fit of experimental data to these isotherm equations was tested and the parameters of equations were determined. The possible interactions of compounds with the carbon surface were discussed considering the charge of the surface and the possible ionization of compounds at acidic, basic and natural pH conditions.  相似文献   

3.
Interaction of pulsed transversely excited atmospheric (TEA) CO2-laser radiation at 10.6 μm with nanoporous activated carbon cloth was investigated. Activated carbon cloth of different adsorption characteristics was used. Activated carbon cloth modifications were initiated by laser pulse intensities from 0.5 to 28 MW/cm2, depending on the cloth adsorption characteristics. CO2 laser radiation was effectively absorbed by the used activated carbon cloth and largely converted into thermal energy. The type of modification depended on laser power density, number of pulses, but mostly on material characteristics such as specific surface area. The higher the surface area of activated carbon cloth, the higher the damage threshold.  相似文献   

4.
An investigation was carried out regarding the removal of pollutants such as nitrate and pesticides (atrazine, deethylatrazine and deisopropylatrazine) from actual ground water samples obtained in Slovenia, by the use of two new adsorption resins, one derived from styrenedivinylbenzene and one from polystyrene, and commercial nanofiltration and reverse osmosis membranes. Atrazine and deethylatrazine were also bound to the activated carbon. Despite the different technologies applied, the effort was directed towards simultaneous removal of the above-mentioned pollutants. According to the results, the first of the mentioned adsorption resins was successfully used for pesticides’ removal among the tested adsorption media, whereas the removal of nitrates was unsuccessful. The reverse osmosis membrane displayed a high rejection of all compounds. All concentration values after treatment were below the maximum concentration allowed, while the nanofiltration membrane showed lower compound rejection, thus being suitable for atrazine removal.  相似文献   

5.
Removal of acid dyes Acid Blue 45, Acid Blue 92, Acid Blue 120 and Acid Blue 129 from aqueous solutions by adsorption onto high area activated carbon cloth (ACC) was investigated. Kinetics of adsorption was followed by in situ UV-spectroscopy and the data were treated according to pseudo-first-order, pseudo-second-order and intraparticle diffusion models. It was found that the adsorption process of these dyes onto ACC follows the pseudo-second-order model. Adsorption isotherms were derived at 25 degrees C on the basis of batch analysis. Isotherm data were treated according to Langmuir and Freundlich models. The fits of experimental data to these equations were examined.  相似文献   

6.
The adsorption features of activated carbon and the oxidation properties of iron oxides were combined in a composite to produce new materials for atrazine removal from aqueous medium. Activated carbon/iron oxide composites were prepared at 1/1 and 5/1 mass ratios and characterized with powder X-ray diffractometry (XRD), infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and nitrogen adsorption measurements. The adsorption and oxidation processes were evaluated in batch experiments, in order to monitor the atrazine removal capacity of these composites. The main iron oxide actually present in the composites was goethite (alpha-FeOOH). Impregnation with iron oxide reduced the surface area by its deposition in the activated carbon pores. However, a higher iron concentration promoted a higher oxidation rate, indicating that the efficiency of the oxidation reaction is related with the iron content and not with the pre-concentration of the contaminant on the carbon surface through adsorption process.  相似文献   

7.
In the past decades, natural zeolites have found a important role in adsorption applications due to their local availability and low cost preparation. In this study, surface of natural zeolite sample was modified by using cationic surfactants in order to investigate its adsorption capacity to remove pesticides from wastewater. Data obtained from adsorption studies on organo-zeolites were compared with data obtained from those on activated carbon. To determine the adsorption process and properties, the effects of various operating parameters, pH of the solution (3–11), initial concentration of pesticides (5–20 mg · L?1), contact time (10–350 min), and temperature (25–55°C) were investigated in a batch adsorption technique. According to results, the adsorbed amount of fenitrothion on three different adsorbents decreased whereas those of trifluralin on the adsorbents increased with increasing temperature. Langmuir and Freundlich adsorption models were applied to experimental equilibrium data of pesticide adsorption depending on temperature. The data obtained from adsorption isotherms for organo-zeolites and activated carbon were well fitted to the Freundlich model at all temperatures.  相似文献   

8.
The removal of anionic surfactants, benzene sulfonate (BS), p-toluene sulfonate (TS), 4-octylbenzene sulfonate (OBS) and 4-dodecylbenzene sulfonate (DBS) from water and 0.01 M H(2)SO(4) solutions by adsorption onto high area activated carbon cloth (ACC) were studied by in situ UV-spectroscopic technique. The various properties of the ACC were given and the in situ UV-spectroscopic technique was described. Both kinetic and isotherm data were obtained for the adsorption of surfactants. Kinetic data were treated according to intraparticle diffusion, pseudo-first-order, pseudo-second-order and Elovich models. They were found to fit the pseudo-second-order model best. Isotherm data were treated according to well-known Langmuir and Freundlich models. The regression analysis of the data showed that Freundlich model represents the isotherm data of the surfactants better. The rate and extent of adsorption of surfactants were found to increase in the order BS相似文献   

9.
A comparative study of the adsorbents prepared from several industrial wastes for the removal of 2-bromophenol, 4-bromophenol and 2,4-dibromophenol has been carried out. The results show that maximum adsorption on carbonaceous adsorbent prepared from fertilizer industry waste has been found to be 40.7, 170.4 and 190.2 mg g(-1) for 4-bromophenol 2-bromophenol and 2,4-dibromophenol, respectively. As compared to carbonaceous adsorbent, the other three adsorbents (viz., blast furnace sludge, dust, and slag) adsorb bromophenols to a much smaller extent. This has been attributed to the carbonaceous adsorbent having a larger porosity and consequently higher surface area. The adsorption of bromophenols on this adsorbent has been studied as a function of contact time, concentration and temperature. The adsorption has been found to be endothermic, and the data conform to the Langmuir equation. The further analysis of data indicates that adsorption is a first order process. A comparative study of adsorption results with those obtained on standard activated charcoal sample shows that prepared carbonaceous adsorbent is about 45% as efficient as standard activated charcoal in removing bromophenols. To test the practical utility of this adsorbent, column operations were also carried out. The results were found satisfactory in removing bromophenols by column operations. Therefore, the present investigations recommend the use of carbon slurry waste as inexpensive adsorbent for small scale industries of developing/poor countries where disposal of solid waste of various industries and proper treatment of polluted wastewater is a serious problem.  相似文献   

10.
Detection of pesticide residues on individual particles   总被引:1,自引:0,他引:1  
An aerosol time-of-flight mass spectrometer (ATOFMS) is used to analyze the size and composition of individual particles containing pesticides. Pesticide residues are found in the atmosphere as a result of spray drift, volatilization, and suspension of coated soils. The ability of the ATOFMS to identify the presence of these contaminants on individual particles is assessed for particles created from pure solutions of several commonly used pesticides, as well as pesticides mixed with an organic matrix, and coated on soils. The common names of the pesticides studied are 2,4-D, atrazine, chlorpyrifos, malathion, permethrin, and propoxur. Analysis of the mass spectra produced by single- and two-step laser desorption/ionization of pesticide-containing particles allows for identification of peaks that can be used for detection of pesticide residues in the ambient aerosol. The identified marker peaks are used to approximate detection limits for the pesticides applied to soils, which are on the order of a fraction of a monolayer for individual particles. Results suggest that this technique may be useful for studying the real-time partitioning and distribution of pesticides in the atmosphere immediately following application in agricultural regions.  相似文献   

11.
An in-depth study of SPME optimization and application has been made, considering not only aqueous (surface water and groundwater samples) but also the more complex soil samples. Seven herbicides widely used in the area of study have been selected including five triazine herbicides (atrazine, simazine, terbumeton, terbuthylazine, terbutryn), molinate, and bromacil. linearity range was between 0.1 and 10 ng/mL and the repeatability below 10% when applying the optimized SPME procedure to water samples. Reproducibility was found to be lower than 20% at the 1 ng/mL level, and the limits of determination in environmental water samples using GC/MS (SIM mode) were well below 0.1 ng/mL (values ranging from 10 to 60 ng/L). Extraction of selected herbicides from soil was carried out by microwave-assisted solvent extraction using methanol in screw-capped vials, leading to recoveries over 80% in spiked soil samples at the 5-200 ng/g level. SPME application over methanolic soil extracts required a 10-fold dilution with distilled water. The recommended procedure was found to be fully applicable for quantitative determination of selected herbicides in soils containing low organic matter content with coefficients of variation below or around 10% and limits of determination ranging from 1 to 10 ng/g. Both procedures were applied to real-world surface water and soil samples where several pesticides were detected including atrazine, simazine, terbuthylazine, and molinate.  相似文献   

12.
In this study, activated carbon (WA11Zn5) was prepared from waste apricot, which is waste in apricot plants in Malatya, by chemical activation with ZnCl(2). BET surface area of activated carbon is determined as 1060 m(2)/g. The ability of WA11Zn5, to remove naproxen sodium from effluent solutions by adsorption has been studied. Equilibrium isotherms for the adsorption of naproxen sodium on activated carbon were measured experimentally. Results were analyzed by the Langmiur, Freundlich equation using linearized correlation coefficient at 298 K. The characteristic parameters for each isotherm have been determined. Langmiur equation is found to best represent the equilibrium data for naproxen sodium-WA11Zn5 systems. The monolayer adsorption capacity of WA11Zn5 for naproxen sodium was found to be 106.38 mg/g at 298 K. The process was favorable and spontaneous. The kinetics of adsorption of naproxen sodium have been discussed using three kinetic models, i.e., the pseudo first-order model, the pseudo second-order model, the intraparticle diffusion model. Kinetic parameters and correlation coefficients were determined. It was shown that the pseudo second-order kinetic equation could describe the adsorption kinetics for naproxen sodium onto WA11Zn5. The thermodynamic parameters, such as DeltaG degrees , DeltaS degrees and DeltaH degrees, were calculated. The thermodynamics of naproxen sodium-WA11Zn5 system indicates endothermic process.  相似文献   

13.
Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects appear to be more pronounced with activated carbon materials, perhaps due to smaller pore sizes or larger adsorption surface areas in small pores.  相似文献   

14.
Adsorption of aromatic organic acids: benzoic acid (BA), salicylic acid (SA), p-aminobenzoic acid (pABA) and nicotinic acid (NA), onto high area activated carbon cloth from solutions in 0.4 M H(2)SO(4), in water at natural pH, in 0.1 M NaOH and also from solutions having pH 7.0 were studied by in situ UV-spectroscopic technique. The first-order rate law was found to be applicable for the kinetic data of adsorption. The rates and extents of adsorption of the organic acids were the highest from water or 0.4 M H(2)SO(4) solutions and the lowest from 0.1 M NaOH solution. The order of rates and extents of adsorption of the four organic acids in each of the four solutions (0.4 M H(2)SO(4), water, solution of pH 7.0 and 0.1 M NaOH) was determined as SA>BA>NA approximately pABA. These observed orders were explained in terms of electrostatic, dispersion and hydrogen bonding interactions between the surface and the adsorbate species, taking the charge of the carbon surface and the adsorbate in each solution into account. Adsorption of BA in molecular form or in benzoate form was analyzed by treating the solution as a mixture of two components and applying Lambert-Beer law to two-component system. The adsorption isotherm data of the systems studied were derived at 30 degrees C and fitted to Langmuir and Freundlich equations.  相似文献   

15.
In this work, the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on activated carbon derived from date stones (DSAC) was studied with respect to pH and initial 2,4-D concentration. The experimental data were analyzed by the Freundlich isotherm, the Langmuir isotherm, and the Temkin isotherm. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 238.10 mg/g. Pseudo-first and pseudo-second-order kinetics models were tested with the experimental data, and pseudo-first-order kinetics was the best for the adsorption of 2,4-D by DSAC with coefficients of correlation R(2)>or=0.986 for all initial 2,4-D concentrations studied. The results indicated that the DSAC is very effective for the adsorption of 2,4-D from aqueous solutions.  相似文献   

16.
The effects of functional groups on the adsorption efficiency of nitrate and nitrite from water by carbon cloth were investigated. The carbon cloth was treated by sulfuric acid and used for the adsorption of nitrate and nitrite from water samples at nearly neutral solutions. The concentrations of ions in the solution were monitored using in situ UV spectroscopy. Acid treatment caused a significant increase in the adsorption rate of ions and the adsorption capacity of the adsorbent.  相似文献   

17.
For many years, acid treatment processes have been used to modify substances for their applications on energy storage devices, such as electrochemical capacitors, fuel cells, etc. It is obvious that the increase of surface area and functional groups has beneficial influence on the amount of reactant adsorption. However, the quantitative limitation of active site has been poorly discussed until today. In this experiment, nitric acid (2 M and 14 M) was introduced at 90 °C over different periods of time to oxidate the well-aligned multi-wall carbon nanotubes (MWNTs), which were synthesized directly using carbon cloth (CC) as the substance. Quinoidal functional groups on active CNTs, such as -COOH and -OH, were found to be the result of chemical reaction. Pt catalyst, which was extracted from H2PtCl6 · 6H2O, was deposited onto the carbon nanotubes using electroless plating in chloroplatinic acid solution. The extent of Pt adsorption was measured and was substantially larger than the as-prepared CNTs. It was found that the state of quantitative limitation existed in both 2 M and 14 M systems. A model was also developed to illustrate the limitation in the active site due to the chemical oxidation.  相似文献   

18.
GAC has been modified by loading of potassium nickel hexacyanoferrate (KNiCF) as a new adsorbent for cesium adsorption. The potassium nickel hexacyanoferrate-loaded granular activated carbon (KNiCF-GAC) was characterized using powder x-ray diffraction (XRD) and nitrogen adsorption-desorption isotherm data, infrared spectroscopy, and its cesium adsorption performance in aqueous solution was investigated. The effect of the various parameters such as initial pH value of the solution, contact time, temperature, and initial concentration of the cesium ion on the adsorption efficiencies of KNiCF-GAC have been studied systematically by batch experiments. The adsorption isotherm of KNiCF-GAC was studied and the fitted results indicated that the Langmuir model could well represent the adsorption process. The maximum adsorption capacity of Cs+ onto KNiCF-GAC was found to be 163.9 mg · g?1.  相似文献   

19.
Sawdust (SD) was used as precursor of locally prepared activated carbon with phosphoric acid (PA) chemical activation. The surface area of the product obtained (SDPA) was determined by the BET method to be 1254 m2 g?1. SDPA was used for preconcentration of 133Ba and 226Ra in single and binary systems. The influence of the shaking time, adsorbent dose, and pH on the adsorption was studied in batch experiments. The adsorption is strongly dependent on pH of the medium; the adsorption capacity reaches a maximum at pH 3.4. The process is initially fast, and the maximum adsorption is attained within 4 h of contact. The adsorption follows pseudo-second-order law. In the binary system, the two radionuclides affect each other in the adsorption process, and the prepared SDPA can be used for the separation of these radionuclides.  相似文献   

20.
In this study, rapeseed oil cake as a precursor was used to prepare activated carbons by chemical activation with sodium carbonate (Na2CO3) at 600 and 800 °C. The activated carbon with the highest surface area of 850 m2 g?1 was produced at 800 °C. The prepared activated carbons were mainly microporous. The activated carbon having the highest surface area was used as an adsorbent for the removal of lead (II) and nickel (II) ions from aqueous solutions. The effects of pH, contact time, and initial ion concentration on the adsorption capacity of the activated carbon were investigated. The kinetic data of adsorption process were studied using pseudo-first-order, pseudo-second-order kinetic models and intraparticle diffusion model. The experimental data were well adapted to the pseudo-second-order model for both tested ions. The adsorption data for both ions were well correlated with Langmuir isotherm. The maximum monolayer adsorption capacities of the activated carbon for the removal of lead (II) and nickel (II) ions were determined as 129.87 and 133.33 mg g?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号