首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
2324铝合金蠕变时效成形有限元分析   总被引:3,自引:2,他引:1  
蠕变时效成形技术是利用金属的蠕变特性,将成形与时效同步进行的一种成形方法。该成形方法适于成形可时效强化型合金的整体带筋和变厚度大曲率复杂外形和结构的整体壁板构件,被认为是下一代大型民用飞机特别重要的金属成形工艺之一。文章根据蠕变试验数据,确定了2324铝合金蠕变本构方程中的材料常数,并应用有限元软件ABAQUS/Standard,通过编写蠕变子程序,对2324铝合金板单曲率弯曲、蠕变和回弹进行了有限元分析。  相似文献   

3.
The bending deformation method was adopted to characterize the creep deformation behavior of Al−Cu−Li alloy in the creep aging forming (CAF) process based on a series of CAF tests, and the evolution laws of its mechanical properties and microstructures under different pre-deformation conditions were studied. The results show that the bending creep strain characterization method can intuitively describe the creep variation. With the increase of the pre-deformation strain, the creep strain of the specimen firstly increases and then decreases. The increase of the pre-deformation strain can promote the course of aging precipitation, and improve the formed alloy’s tensile properties at room temperature, the Kahn tearing properties, and the fatigue propagation properties. Pre-rolled specimens produce a slightly weaker work hardening than pre-stretched specimens, but they also create a stronger aging-strengthening effect; thus the strength, toughness and damage performance can be improved to some extent. Among all the types of specimens, the specimen with 3% rolling after CAF treatment has the best comprehensive mechanical properties.  相似文献   

4.
Recent improvements in the manufacturing process of camera lenses have introduced the use of a new technology involving wafer based precision glass moulding. The utilization of this technology has some important advantages such as cost reduction, supply chain simplification and higher image quality. However, the required accuracy for the final size and shape of the moulded lenses as well as the complexity of this technology call for a high level of process understanding and numerical simulation is a very important part of achieving this goal. The viscoelastic parameters of the optical glass as well as the glass/mould interface friction coefficient play a key role in deformation behaviour and stress distribution of the moulded glass lens. Therefore, a proper evaluation of these parameters is the first important step in numerical modelling of the precision glass moulding process.The current paper deals with characterization of the interfacial glass/mould friction coefficient and viscoelastic behaviour of the L-BAL42 glass material above the glass transition temperature. Several glass rings are pressed at three different temperatures to various thicknesses and the experimental force, displacements, internal diameter and thickness of the rings are measured during the tests. Viscoelastic and structural relaxation behaviour of the glass are implemented into the ABAQUS FEM software through a FORTRAN material subroutine (UMAT) and the FE model is validated with a sandwich seal test. Then, by FE simulation of the ring compression test and comparison of the experimental creep with the simulated one in an iterative procedure, viscoelastic parameters of the glass material are characterized. Finally, interfacial glass/mould friction coefficients at different temperatures are determined through FEM based friction curves combined with experimental data points. The obtained viscoelastic parameters and interfacial friction coefficients can later be employed for prediction of the final shape/size as well as the stress distribution in the glass wafer during a real wafer based precision glass moulding process.  相似文献   

5.
The work hardening of a model Al–3Cu–0.05Sn (wt.%) alloy containing shear-resistant θ′ (Al2Cu) precipitate plates was studied as a function of precipitate state. The mechanical response was monitored using both tension and tension–compression (Bauschinger) tests so that the isotropic and kinematic contributions to the work hardening could be separated. The undeformed and deformed structures were characterized using TEM. The kinematic hardening was modeled using the recent approach of Proudhon et al. [19], and good agreement was found for both the absolute magnitude and the strain evolution of the internal stress as a function of precipitate state. The isotropic hardening was modeled using a modified form of the Kocks–Mecking–Estrin approach, taking into account the contribution to the forest dislocation density from the plastic relaxation around the precipitate plates that accompanies the saturation in the internal stress during straining. In this way, the evolution of the isotropic and kinematic hardening during straining are coupled, and the dual role of the precipitates in contributing to both modes is emphasized. Finally a parametric analysis of the model is performed to identify the changes in microstructural parameters that will allow simultaneous increases in both yield strength and uniform elongation. It is suggested that increasing the precipitate number density of this system will achieve this end.  相似文献   

6.
针对Al-Zn-Mg-Cu合金变温双级蠕变时效过程,建立了一种考虑蠕变应变与屈服强度的本构框架,通过实验数据的简单拟合方法获得了模型参数。模型不仅以简单的形式具备了处理蠕变时效过程中的应力松弛、强化响应和温度变化的能力,而且能够应用到有限元软件中模拟构件的蠕变量、屈服强度和回弹。模型结果不仅能够适应不同外加应力下实测的蠕变应变曲线,且有限元模拟结果与实测结果能够很好地吻合。  相似文献   

7.
Hysteresis loops of strain controlled LCF tests for Waspaloy were characterized within the temperature range of 350°C and 600°C. Materials deformation behaviors under symmetric and asymmetric loading conditions were assessed using Chaboche’s viscoplasticity model. The strain hardening and stress relaxation occurring in the loading cycles were estimated. Hardening plays an important role at an early stage of loading, but the stress relaxation becomes dominant at a later stage. The observed change in the slope of hysteresis loops between the first cycle and the second cycle and mean stress relaxation under asymmetric loading conditions may be explained by the evolution of the kinematic hardening variable which depends on the inelastic strain range. The effect of creep on the cyclic shake down is expected to be limited.  相似文献   

8.
铝合金时效成形方法结合了合金的蠕变松弛和析出强化作用,作为一种先进的整体壁板制造技术倍受航空制造业青睐。7xxx系铝合金在时效成形过程中的应力松弛行为受到合金内析出相与位错蠕变交互作用的影响从而制约着成形后零件质量与性能。本文采用设计的应力松弛试验研究了不同时效态(固溶态,欠时效态和峰时效态)7050铝合金内析出相对时效成形过程中应力松弛行为的影响,并通过位错热激活动力学参数计算和显微组织表征分析析出相与位错运动的交互作用。结果表明时效成形过程中析出相对位错热激活运动有明显地阻碍作用,因此含有不同尺度析出相铝合金的应力松弛行为表现不同,随着析出相尺度的增加合金应力松弛速率减缓,应力松弛极限增大。不同时效态7050铝合金位错激活体积计算和显微组织表征结果都证明了应力松弛过程中析出相增大对位错运动的阻碍作用也越显著。峰时效态7050铝合金的位错激活体积最大,时效成形后塑性应变的转化率最低。此外,时效成形过程中,7050铝合金内析出相对位错热激活的阻碍作用引起了槛应力现象,且随着析出相的增大槛应力也逐渐增大。  相似文献   

9.
研究了Ti-4Al-1.5Mn合金在500~700℃的应力松弛特性,首先在蠕变试验机上开展了该合金500、600和700℃条件下的松弛试验,基于松弛数据分别建了双曲正弦和时间硬化两类本构模型,并对模型的预测精度进行了预测。随后把2类本构模型应用于ABAQUS软件对板材V形弯曲过程进行了仿真分析。结果表明,应力松弛的影响因素主要有温度和时间,松弛过程可以分为2个阶段,第1阶段应力快速下降,第2阶段缓慢下降并逐渐稳定于松弛极限。双曲正弦和时间硬化模型均可以对松弛过程进行较准确地预测,V形弯曲后回弹结果表明双曲正弦比时间硬化模型具有更高的预测精度。研究结果对利用应力松弛进行精确成形的工艺设计具有指导意义。  相似文献   

10.
铁素体-奥氏体异种钢接头的界面组织及力学性能   总被引:2,自引:0,他引:2       下载免费PDF全文
为提高电站锅炉过热器铁素体-奥氏体异种钢焊接接头的高温蠕变断裂强度和服役寿命,设计了专用的镍基填充材料及组合焊接接头。通过对不同焊缝接头的高温蠕变力不试验,焊缝界面组织变化分析,碳扩散和热应力的测试分析,认为在高温低力的条件下,接头焊缝界面及热影响区碳元素扩散迁移和碳化物聚集是影响接头蠕变断裂强度的重要原因。  相似文献   

11.
在连续矫直过程中,铸坯温度高,蠕变及应力松弛现象十分明显,坯壳处于高温、低应变和低应变速率的状态。在Gleeble-3500型热/力模拟试验机上模拟连铸坯连续矫直的工艺条件,对普碳钢的高温蠕变、应力松弛等进行了定性实验,实验结果表明,该条件下钢的蠕变及应力松弛速度很快。以某钢厂板坯连续弯曲、矫直改造为例,计算了连续矫直过程中坯壳固液相界面处的矫直应变。现场实际应用效果表明,通过采用矫直区由两段光滑连接的曲线段组成的设计方案,对连续矫直区合理布置,从而充分利用钢的高温蠕变及应力松弛现象,对降低矫直应变速率,提高连铸坯质量有很重要的意义。  相似文献   

12.
13.
建立了与焊接热循环温度和热变形历史相关的铝合金本构关系,利用MSC.MARC二次开发接口和Fortran语言,以塑性变形有限元计算增量理论为基础,开发了适用于焊接过程的材料本构关系用户子程序.采用弹塑性(混合硬化)和蠕变性质(应变软化)描述低温应变硬化特征和高温动态回复及再结晶引起的应变软化特征,不同温度的本构关系形式一致而参数不同.结果表明,焊件的残余应力和应变结果与理论结果吻合良好.与采用理想弹塑性本构关系相比,采用新开发的本构关系,高温应变软化和低温应变硬化导致等效残余应力基本不变,纵向残余压缩塑性应变较大,相应的焊接残余变形也较大.  相似文献   

14.
A micromechanics-based model to predict yield strength and plastic work hardening is proposed. To simplify the problem, additional strengthening by dislocation-dislocation interaction is assumed to be related only to the resistance to the motion of dislocations by uniformly distributed precipitates. The interaction between the mobile dislocations and precipitate particles is facilitated in a physically based approach. The main parameters of the proposed model are the size and strength of the precipitate under different aging conditions and microstructural parameters along with the stress state around the idealized precipitate. For verification purposes, the proposed hardening model was calibrated with previously published data and applied to the prediction of the yield stress and flow curve for precipitated alloys under different aging conditions. In particular, the existence of a transient region in the hardening rate from positive to negative could be reproduced well.  相似文献   

15.
Laser shock peening (LSP) induced residual stresses in Ti–6Al–4V, and their thermal relaxation due to short-term exposure at elevated temperatures are investigated by an integrated modeling/simulation and experimental approach. A rate and temperature-dependent plasticity model in the form of Johnson–Cook (JC) has been employed to represent the nonlinear constitutive behavior under both LSP and thermal loads. By comparing the simulation results with experimental data, model parameters for Ti–6Al–4V are first calibrated and subsequently applied in analyzing the thermal stability of the residual stress in LSP-treated Ti–6Al–4V. The analysis shows that the magnitude of stress relaxation increases with the increase of applied temperature due to material softening. Most of stress relaxation occurs before 10 min to 20 min exposure in this study, and stress distribution becomes more uniform after thermal exposure. An analytical model based on the Zener–Wert–Avrami formula is then developed based on the simulation results. The activation enthalpy of the relaxation process for laser shock peened Ti–6Al–4V is determined to be in the range of 0.71 eV to 1.37 eV.  相似文献   

16.
A unified constitutive model is presented to predict the recently observed “multi-stage” creep behavior of Al-Li-S4 alloy. The corresponding microstructural variables related to the yield strength and creep deformation of the alloy during the creep ageing process, including dislocations and multiple precipitates, have been characterized in detail by X-ray diffraction (XRD) and transmission electron microscopy (TEM). For the yield strength, the model considers the multiphase strengthening behavior of the alloy based on strengthening mechanisms, which includes shearable T1 precipitate strengthening, non-shearable T1 precipitate strengthening and θ′ precipitate strengthening. Based on creep deformation mechanism, the “multi-stage” creep behavior of the alloy is predicted by introducing the effects of interacting microstructural variables, including the radius of multiple precipitates, dislocation density and solute concentration, into the creep stress-strain model. It is concluded that the results calculated by the model are in a good agreement with the experimental data, which validates the proposed model.  相似文献   

17.
This paper presents a customized FE model for describing the microstructural changes during dry and cryogenic cutting of Ti6Al4V. It addresses the importance to modify the material behavior taking into account the microstructural changes and the cooling/lubrication effects during the cutting process. With this aim, a user subroutine is implemented in the FE code to describe the surface and subsurface modifications taking place during the cutting process and to implement them in order to properly modify the material flow stress. Thus, the material flow stress is continuously updated during the simulation according to the new microstructure characteristics. The proposed FE model is calibrated and validated by comparison with experimental results.  相似文献   

18.
通过高温拉伸试验研究Hastelloy C-276合金在不同温度和初始应力下的应力松弛行为。实验得到了一系列应力松弛曲线,应用二次延迟函数对实验测得的应力松弛曲线进行拟合,拟合出的曲线与实验应力松弛曲线符合得较好。从实验测得的应力松弛曲线可以推导出不同温度下材料的蠕变应变速率与应力之间的关系,此外,还探讨了温度对Hastelloy C-276合金应力松弛的影响,为转子屏蔽套真空热胀形过程的有限元模拟工作奠定了理论基础,并为其提供了有价值的数据。  相似文献   

19.
《Acta Materialia》2002,50(1):209-222
The small, coherent BCC precipitates of copper that form during fast-neutron irradiation of ferritic steels are an important component in the irradiation hardening that occurs during service. The conventional explanation of hardening due to copper precipitates is given in terms of the Russell–Brown (M. Acta Metall. 20 (1972) 969) modulus hardening model, in which precipitates are treated as soft spots in iron. In the present paper, the core structure and energy of a <111> screw dislocation are computed as it approaches a row of precipitates. The results indicate that the hardening observed in experiments is due to the effect of the screw dislocation core on the BCC copper structure rather than elastic interaction. This is a new precipitate strengthening effect. The increase in the flow stress is estimated from the interaction energy between the dislocation and the precipitate row, and the estimated value for precipitates of a size and spacing found in irradiated reactor pressure vessel steels is encouragingly close to that found experimentally.  相似文献   

20.
ABSTRACT

A modified acoustic-plastic constitutive model characterising both acoustic softening and residual hardening effects on aluminium alloys is developed and applied into a computational fluid dynamic model for the ultrasonic vibration enhanced friction stir welding (UVeFSW) process. The flow stress and material flow field in UVeFSW are quantitatively analysed. The effect of acoustic residual hardening on the streamlines density at rear advancing side is examined by comparing with that based on the model considering just acoustic softening. The numerical simulation results are experimentally validated, and it is found that the modified constitutive equation improves the prediction accuracy of the flow stress and material flow field in UVeFSW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号