首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ever-increasing rise in demand for sustainable materials has received significant attention in developing biocomposites for structural applications. In this regard, natural fibers replacing synthetic fibers as reinforcement in epoxy composite could be a significant gain toward sustainability, especially in automobile and structural applications. Herein, flax fiber/cellulose paper–reinforced epoxy biocomposite (FREC-X) was fabricated via a vacuum infusion process. The influence of postcuring conditions (time and temperature) and cellulose paper density on the mechanical properties of FREC-X was studied. The tensile strength and modulus of FREC-X increased by 37% and 64%, respectively, upon the integration of paper. Postcuring FREC-X further augmented the tensile and flexural properties of the composite, which could be attributed to the increase in cross-linking of the epoxy and yields a strong polymer network. Fractography analysis confirmed that the composites integrated with paper showed fewer defects with improved interfacial adhesion. In addition, the water absorption and thickness swelling results revealed that the presence of cellulose paper marginally increased the water uptake and thickness swelling of FREC-X. Furthermore, there was no significant change in the tensile and flexural properties of FREC-X observed even after immersing in water for >200 h. Such properties of FREC-X seen as a fascinating alternative to synthetic fibers and petroleum-based epoxy and are promising material for sustainable development.  相似文献   

2.
Nanocomposite films for food packaging applications were developed using bacterial cellulose (BC) nanofibers in different amount in a poly(vinyl alcohol)/starch (PVA/St) matrix. In search of a better method to reduce the harmful ingredients in food packaging, the cellulose nanofibers were obtained by the mechanical defibrillation of BC pellicles thus avoiding the addition of chemicals in the final packaging material. Improved mechanical performances were obtained starting from just 1% BC nanofibers in PVA/St. Atomic force microscopy images showed a uniform dispersion of BC nanofibers on the surface of nanocomposites. A twofold increase of both tensile strength and modulus was obtained for 2 wt % BC in the composite. BC nanofibers have greatly improved the barrier properties of PVA/St matrix, a twofold increase of water vapor permeability being obtained for only 2 wt % BC nanofibers in the composite film. PVA/St/2BC was proposed as a high potential material for food packaging applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45800.  相似文献   

3.
Recently, cellulose‐based hydrogel nanocomposite materials have been attracted increasing attention owing to their potential applications in different areas including medical, electrical, optical, and magnetic fields. This is due to the fact that cellulose is one of the most abundant resources and possesses several unique properties required in medical fields, whereas silica nanoparticles (nSiO2) play an important role in developing materials with high functionality. In this study, cottonseed hull (CSH) was used as a source of cellulose and nSiO2 was used to prepare hydrogel nanocomposite films via phase inversion method without chemical crosslinking agent of cellulose. CSH was first pre‐treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaOCl) for delignification and bleaching, respectively. The pre‐treated CSH exhibited whiter fiber and lower amount of lignin as compared with the untreated CSH. The properties of cellulose‐base hydrogel were found to be improved as a result of the addition of nSiO2 at 2–6 wt % for tensile strength and up to 10 wt % for modulus and elastic modulus (G′). However, the elongation at break was decreased with the incorporation of nSiO2. Moreover, the TEM images displayed the nano‐grape structure of nSiO2 surrounded by cellulose molecules. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44557.  相似文献   

4.
The effect of paper sludge's particle size and extrusion temperature on the physical and mechanical properties of paper sludge–thermoplastic polymer composites was investigated. In the experiment three levels of particle sizes for the paper sludge and four extrusion temperatures were designed to examine the physical and mechanical properties of these composites. The ash contents of the paper sludge were about 73.7, 46.2, and 38.1% with particle sizes of below 0.15, 0.18–0.25, and 0.42–0.84 mm, respectively, which meant lower ash content and higher cellulose fiber content, in the larger particle size of paper sludge. As the particle size of the paper sludge decreased, the swelling thickness, water absorption, and tensile and flexural strengths of the composite improved; but the particle size of the paper sludge had no effect on its unnotched impact strength. With the increase of the extrusion temperature the thickness swelling and water absorption of the composites were slightly improved but not statistically different. A rise of the extrusion temperature generally had a positive effect on the tensile and flexural properties of the composite. The notched and unnotched impact strengths of the composite increased with the increase of the extrusion temperature from 190 to 230°C, but they decreased slightly at an extrusion temperature of 250°C. This low impact energy at an extrusion temperature of 250°C may be attributed to the excessively brittle fibers from thermal decomposition. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2709–2718, 2001  相似文献   

5.
Cellulose nanofibers were extracted from sisal and incorporated at different concentrations (0–5%) into cassava starch to produce nanocomposites. Films' morphology, thickness, transparency, swelling degree in water, water vapor permeability (WVP) as well as thermal and mechanical properties were studied. Cellulose nanofiber addition affected neither thickness (56.637 ± 2.939 µm) nor transparency (2.97 ± 1.07 mm?1). WVP was reduced until a cellulose nanofiber content of 3.44%. Tensile force was increased up to a nanocellulose concentration of 3.25%. Elongation was decreased linearly upon cellulose nanofiber addition. Among all films, the greatest Young's modulus was 2.2 GPa. Cellulose nanofibers were found to reduce the onset temperature of thermal degradation, although melting temperature and enthalpy were higher for the nanocomposites. Because cellulose nanofibers were able to improve key properties of the films, the results obtained here can pave the route for the development and large‐scale production of novel biodegradable packaging materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44637.  相似文献   

6.
Novel composite films constituted of poly(lactic acid) (PLA), hydroxyapatite (HAp), and two types of regenerated cellulose fillers—particulate and fibrous type—were produced by melt extrusion in a twin‐screw micro‐compounder. The effect of the film composition on the tensile and dynamic mechanical behavior and the HAp dispersion in the PLA matrix were investigated thoroughly. Appearance of crazed regions and prevention of HAp aggregation in the PLA matrix were elucidated in the composites with up to 15 wt % particulate cellulose content, which was the main reason for only slight reduction in the tensile properties, and consequently trivial degradation of their pre‐failure energy absorption as compared to neat PLA films. Superior dynamical energy storage capacities were obtained for the particulate cellulose modified composites, while their fibrous counterparts had not as good properties. Additionally, the anisotropic mechanical behavior obtained for the extruded composites should be favorable for use as biomaterials aimed at bone tissue engineering applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40911.  相似文献   

7.
In this study, bacterial cellulose (BC) hydrogels were cultured from a kombucha SCOBY starter. The scanning electron microscopy (SEM) results indicated that the dried BC exhibited an interpenetrating fibrous mat. The BC films harvested for 5, 10, and 15 days were 15–19, 14.4–24, and 30–31 μm thick, respectively. Then, BC/graphene oxide (GO) composite films were prepared via the exhaust dyeing method. GO sheets penetrated the BC matrix, resulting in the formation of a BC/GO composite, as revealed by the SEM analysis results. The mechanical properties of the composite films were investigated. Compared with virgin BC, the tensile strength of the composite films was higher, while the %E at break was lower, resulting in a significant increase in the Young's modulus. The X-ray diffraction results indicated that an increase in the dyeing time (0.5–2 h) gradually induced cellulose crystalline conformation, which in turn affected the swelling ability, mechanical properties, and electrical properties of the BC/GO composite films. After the reduction of GO to reduced GO (rGO), flexible conductive BC/rGO films were obtained, as confirmed by their resistivity values. Thus, flexible conductive composite films with excellent mechanical properties were successfully fabricated.  相似文献   

8.
Multifunctional transparent composite films with high dielectric permittivity (high‐k), breakdown strength, and mechanical properties are urgently required by cutting‐edge fields. Herein, novel multifunctional films were facilely prepared through building unique cross‐linked structure based on epoxy resin (EP) and polyacrylonitrile (PAN)‐lithium trifluoromethane sulfonate (LiTf) complex. Compared with high‐k materials reported previously, EP/(PAN‐LiTf) films simultaneously show very high transparency, good flexibility, high tensile, and breakdown strengths. For 0.22EP/(PAN‐LiTf) film with 22 wt % EP, its average transmittance and elongation at break are as high as 91% (600–800 nm) and 12.7%, respectively; moreover, its dielectric permittivity, AC breakdown strength and the maximum energy density are severally about 4.9, 1.8, and 15.2 times of those of EP resin, completely overcoming the sticky problems in conductor/polymer composites. The origin behind these attractive properties is intensively discussed, and believed to be attributed to the unique structure of EP/(PAN‐LiTf) films. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45218.  相似文献   

9.
This work aimed to develop a novel epoxy‐modified tung oil waterborne insulation varnish with blocked hexamethylene diisocyanate as a curing agent. The Diels–Alder reaction between tung oil and maleic anhydride, and the ring‐opening esterification reaction of epoxy resin were confirmed. The conversion rate of epoxy was explored as a function of reaction time and temperature. The effects of epoxy resin content on the thermal stability, water absorption and insulation properties (insulation strength, volume resistivity, and surface resistivity) of films were investigated, and the resistances of films to salted water were evaluated. The increase in epoxy resin contents could improve the thermal stability and insulation properties of films, and decreased the water adsorption of films, but when the epoxy resin content reached 30% and above, the water solubility of resin became poor. After being immersed in 3.5 wt % NaCl solution, the electrical insulation strength of films were lower than that in dry state, and decreased as the immersed time prolonged. In particular, the electrical insulation strength loss of films increased significantly for epoxy resin content at 15% and below. Furthermore, the increase of epoxy resin content could improve the hardness and adhesion of films, but the flexibility of films became worse. On the basis of experimental, the epoxy resin content at 25% was appropriate to prepare waterborne epoxy‐modified tung oil resin. The resulting varnish may have potential as an immersing insulation varnish for the spindle of electric motor. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42755.  相似文献   

10.
In this study, the properties of poly (vinyl alcohol) (PVA) films incorporated with Zataria multiflora essential oil (ZMO) as a potential antioxidant/antibacterial material was investigated. PVA films were prepared from PVA solutions (2% w/v) containing different concentrations of ZMO. Water solubility, moisture absorption, water swelling, and water vapor permeability for pure PVA films were 57 ± 1.1, 99 ± 3.2%, 337 ± 8%, and 0.453 ± 0.015 g mm/m2 h, respectively. Incorporation of ZMO into PVA films caused a significant decrease in water swelling and moisture absorption and increase in solubility and water vapor permeability. Tensile strength, elastic modulus, and elongation at break for pure PVA films were 13.5 ± 0.61 MPa, 15.2 ± 0.8 MPa, and 216 ± 4%, respectively. Incorporation of ZMO into the PVA films caused a significant decrease in tensile strength and elastic modulus and increase in elongation at break of the films. Pure PVA film showed UV‐visible light absorbance ranging from 280 to 440 nm with maximum absorbance at 320 nm. Addition of ZMO caused a significant increase in light absorbance and opacity. PVA films exhibited no antioxidant and antifungal activities, whereas PVA/ZMO films exhibited excellent antioxidant and antifungal properties. Although the bioactivity PVA films were improved by the addition of ZMO, however, the mechanical properties and water binding capacity of the films were weaken slightly. Thus, ZMO emulsified in the ethanol not compatible with PVA matrix and more suitable emulsifier was needed in order to obtain strong film with higher mechanical properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40937.  相似文献   

11.
Bacterial cellulose (BC) in an NaOH/urea aqueous solution was used as a substrate material for thefabrication of a novel regenerated cellulose membrane. The dissolution of BC involved swelling BC in a 4 wt % NaOH/3 wt % urea solution followed by a freeze–thaw process. The BC solution was cast onto a Teflon plate, coagulated in a 5 wt % CaCl2 aqueous solution, and then treated with a 1 wt % HCl solution. Supercritical carbon dioxide drying was then applied to the formation of a nanoporous structure. The physical properties and morphology of the regenerated bacterial cellulose (RBC) films were characterized. The tensile strength, elongation at break, and water absorption of the RBC membranes were 4.32 MPa, 35.20%, and 49.67%, respectively. The average pore size of the RBC membrane was 1.26 nm with a 17.57 m2/g surface area. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Poly(ethylene glycol) (PEG) crosslinked chitosan films with various PEG to chitosan ratio and PEG molecular weight were successfully prepared via the epoxy‐amine reaction between chitosan and PEG‐epoxy. The thermal and mechanical properties and swelling behavior were studied for the PEG crosslinked chitosan films. The mechanical strength of chitosan films were greatly enforced by the introduction of PEG‐epoxy, achieving an elongation of about 80%. It was found that the crosslinked chitosan films form hydrogel in water, achieving a swelling ratio higher than 20 times of original weight. The swelling behavior of chitosan films relied greatly on the molecular weight of the crosslinker PEG‐epoxy and the weight percent of PEG‐epoxy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

13.
Spirulina–poly(vinyl alcohol) (PVA)–glycerol (SPG) films with improved mechanical performance, especially tensile strength (TS) and the elongation at break (EAB), are fabricated by a casting method. The integrity, color, solubility, microstructure, thermal properties, tensile strength, and compatibility of the SPG films are assessed. SPG films became smooth, homogeneous, and flexible after plasticizing with glycerol. The presence of PVA and hydrogen bonding of PVA with glycerol and spirulina protein improves the water resistance of SPG films by decreasing water absorption of spirulina protein and decreasing water diffusion through the films. The amount of carbonaceous residues decreases from 31% to 14% because of the co‐pyrolysis of spirulina, PVA, and glycerol. TS increases from 2.5 to 26 Mpa and modulus from 53 to 610 Mpa with increasing PVA content. Glycerol enhances film flexibility and EAB up to 50%. Spirulina can be composited with hydrophilic polymers to fabricate compatible, processable and thermally recyclable films with desirable mechanical performance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44842.  相似文献   

14.
As one of the duplicated cases of ultrathin polymer films, multilayer graphite/polymer composites are of great interests in various applications. Graphite/polyethylene (PE) composites with various layer numbers and graphite particle sizes were prepared by lamination. The mechanical and dielectric properties and crystalline behavior of the composites were investigated by scanning electron microscopy, differential scanning calorimetry, tensile test, and dielectric strength test. With the same amount of graphite addition, the tensile strength of the composites increases with decreasing layer thickness, but decreases with increasing graphite particle size. The longitudinal tensile strength is greater than the transverse one. The tensile strength of the 36-layer composites with a particle size of 15 μm has enhancements of 34.76 and 68.39% in the longitudinal and transverse directions compared with that of the single-layer pure PE film. The dielectric constant of the composites nonlinearly increases with decreasing layer thickness, while the dielectric loss is independent of this factor. The dielectric constant of the 36-layer composites with a particle size of 15 μm is about two times as large as that of the single-layer pure PE film. The crystalline peak temperature and the crystallinity of the composites increase with the decrease in layer thickness. Coarse-grained molecular dynamics simulations were also carried out to understand the experimental observations by getting an insight into the microstructure of the multilayer composites. This work would be helpful for the production of optimized of multilayer graphite/polymer composites by lamination for electric energy storage. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48131.  相似文献   

15.
In this study, crosslinking of poly(vinyl alcohol) (PVA) with tartaric acid, as crosslinker, is performed using microwave irradiation. A comparison between the properties of PVA crosslinked using microwave irradiation and conventional heating methods is also discussed. While the water absorption, tensile and thermal properties of PVA crosslinked by either of the methods are comparable, microwave irradiation took only one‐eighth (14 min) of the time compared to conventional heating. In comparison with PVA (42 MPa), the strength of PVA crosslinked with 35% TA increased to 145 and 153 MPa for conventional heating and microwave irradiation, respectively. Water absorption of crosslinked PVA film is successively reduced to less than 30% in comparison with PVA (~200%). Moreover, the crosslinked films are stable at higher temperatures in comparison with PVA. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46125.  相似文献   

16.
Biodegradable counterparts of petro plastics for packaging applications are highly desired due to environmental considerations. Agar can be a potential material due to its availability and biodegradability. However, moderate mechanical strength and thermal stability, in addition to poor resistance against water, needs to be addressed before agar can be commercially implemented as packaging material. As a step toward this objective, graphene oxide (GO) and reduced GO (RGO) were incorporated in agar and were solution casted in the form of films. The tensile strength was increased by 118.4% and 69.4% at 2% GO and 2% RGO loading, respectively. Higher interfacial bonding between GO and agar compared to that of RGO and agar was attributed for the observed mechanical properties. Resistance to swelling and hydrophobicity (contact angle) of the composite were improved as well when compared to pure agar. The tensile strength and the contact angle values were however, decreased after the addition of 2% GO and 2% RGO. The morphological investigation showed that the formation of pores at higher concentration of reinforcement was the contributing factor for the decrease in tensile strength. No significant change in thermal properties was observed. The transmittance value was reduced to 0% after the incorporation of GO and RGO. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45085.  相似文献   

17.
Poly(vinyl alcohol) (PVA) was blended with 10, 20, 30, 40, and 50 wt % of starch with and without crosslinking by solution casting process. The solution‐casted films were dried and tested for physicomechanical properties like tensile strength, tensile elongation, tensile modulus, tear and burst strengths, density, and thermal analysis by differential scanning calorimetry (DSC). These PVA/starch films were further characterized for moisture content; solubility resistance in water, 5% acetic acid, 50% ethanol, and sunflower oil; and swelling characteristics in 50% ethanol and sunflower oil. The crosslinked PVA/starch composite films show significant improvement in tensile strength, tensile modulus, tear and burst strengths, and solubility resistance over the uncrosslinked films. Between the crosslinked and uncrosslinked films, the uncrosslinked films have higher tensile elongation, moisture content, moisture absorption, and swelling over the crosslinked films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 909–916, 2007  相似文献   

18.
In some applications, homopolymerized epoxies, which offer better biocompatibility and lower water absorption than amine‐ and anhydride‐cured epoxy, are more preferable; however, using homopolymerized epoxy as matrix in composites still remains a challenge. Herein, homopolymerized bisphenol A diglycidyl ether curing systems with simultaneously improved tensile strength, impact strength, and glass transition temperature (Tg) were achieved by addition of small amounts of tetra‐functional epoxies (TFTEs) with different spacer lengths. Effects of spacer length in TFTE on thermal and mechanical properties were investigated. Results indicated that TFTE with the longest spacer length shows the best mechanical performance. In addition, effects of TFTE loading on thermal and mechanical properties were discussed. Compared with neat bisphenol A diglycidyl ether, addition of 5% tetraglycidyl‐1,10‐bis(triphenylmethane) decane leads to simultaneous improvements in tensile strength, impact strength, and Tg. Effects of thermal cycling on the mechanical properties were also reported. Results suggest that the modified homopolymerized epoxy shows good performances and could be used as matrix materials and possibly in some dental applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46431.  相似文献   

19.
The present study describes microwave (MW)-assisted rapid synthesis of biocompatible poly(vinyl alcohol) (PVA) composite films that demonstrate synergy between reinforcement and crosslinking. Bacterial cellulose (5% w/w) nanowhiskers (reinforcement) and tartaric acid 35% (w/w) (crosslinker) are incorporated in PVA to prepare crosslinked cellulose–PVA composite films. The properties of thus prepared crosslinked cellulose–PVA composite films are compared with samples crosslinked with conventional hot air oven heating (CH). Crosslinking by both of the methods reduces water absorption of PVA by around an order of magnitude and improves its thermal stability. An increase in strength from 42 (PVA) to 172 MPa and 159 MPa for MW and CH crosslinked samples, respectively is also observed. Although composites prepared using MW and CH show similar properties, MW takes only 14 min compared to 2 h in case of CH. Notably, the prepared composites demonstrate hemocompatibility and cytocompatibility, and may also be explored for biomedical applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47393.  相似文献   

20.
Semi-refined carrageenan (SRC) films are sensitive to moisture and generally have poor mechanical properties. These factors limit their use in applications where moisture levels are high and good mechanical strength is required. This work investigated the incorporation of nanoclay (NC) into SRC film in combination with surface lamination using a thin layer of poly(caprolactone) (PCL) to enhance the barrier properties and hydrophobicity of the SRC film and concurrently improved the mechanical properties. The water vapor permeability, moisture uptake, and water solubility decreased by 92, 24, and 11%, respectively, and the water contact angle increased from 72° to 95°. The tensile strength and elongation at break increased by 17.9 and 2.8%, respectively, and the thermal stability also increased slightly. The PCL lamination was the main contributor to the enhanced barrier and mechanical properties of the films, whereas the NC inclusion contributed more to the enhanced thermal properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号