首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starch‐based plastic films were prepared by the electron beam irradiation of starch and poly(vinyl alcohol) (PVA) in a physical gel state at room temperature. The influence of starch/PVA composition, irradiation dose, and plasticizer (glycerol) on the properties of the plastic films was investigated. The gel fraction of the starch/PVA films increased with both the radiation dose and PVA content in the plastic film and decreased with increasing glycerol concentration. The starch/PVA compatibility was determined by measurement of the thermal properties of the starch/PVA blends with various compositions with differential scanning calorimetry. The swelling of the starch/PVA films increased with increasing PVA content and decreasing irradiation dose. Mechanical studies were carried out, and the tensile strength of the films decreased at high starch ratios in the starch‐based mixture. This was due to the decrease in the degree of crosslinking of starch. Furthermore, when PVA, a biodegradable and flexible‐chain polymer, was incorporated into the starch‐based films, the properties of the films, such as the flexibility (elongation at break), were obviously improved. The tensile strength of the films decreased with increasing glycerol concentration, but elongation at break increased up to a maximum value at a 20% glycerol concentration, and then, it leveled off and decreased slightly. Biodegradation of the starch/PVA plastic films was indicated by weight loss (%) after burial in soil and morphological shape, which was detected by scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 504–513, 2007  相似文献   

2.
Starch/polyvinyl alcohol (PVA) blend films were prepared by using corn starch, polyvinyl alcohol (PVA), glycerol (GL), and citric acid (CA) as additives and glutaraldehyde (GLU) as crosslinking agent for the mixing process. The additives, drying temperature, and the influence of crosslinker of films on the properties of the films were investigated. The mechanical properties, tensile strength (TS), elongation at break (% E), degree of swelling (DS), and solubility (S) of starch/PVA blend film were examined adding GL and CA as additives. At all measurement results, except for DS, the film adding CA was better than GL because hydrogen bonding at the presence of CA with hydroxyl group and carboxyl group increased the inter/intramolecular interaction between starch, PVA, and additives. CA improves the properties of starch/PVA blend film compared with GL. TS, % E, DS, and S of film adding GLU as crosslinking agent were examined. With increasing GLU contents, TS increases but % E, DS, and S value of GL‐added and CA‐added films decrease. When the film was dried at low temperature, the physical properties of the films were clearly improved because the hydrogen bonding was activated at low temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2554–2560, 2006  相似文献   

3.
In order to obtain casein edible films with great packing performance, gelatin as the reinforcing additive with different ratios were loaded via two methods including layer- by- layer and blending. A comparative study on structure properties between double layers and blending films made from casein and gelatin was obtained by scanning electron microscopy and Fourier transform infrared spectroscopy. The difference between the films' packing characters were conducted by water vapor permeability (WVP), optical property, and mechanical properties (including tensile strength (TS) and elongation (EAB)). The results showed that the degree of films roughness increased and the structural stability decreased as the increase of gelatin additive ratio in both double layers and blending films. Thickness and WVP both displayed a trend of increasing first then decreasing at the dividing of gelatin instead of casein in 50%. Importantly, WVP values in double layers film with a largest value of 6.95 gm−1Pa−1s−1 was higher than blending films, observably (P < 0.05). Additionally, TS in blending film was increased by 23.44% than double layers film under the gelatin additive proportion of 70%, and EAB value in double layers film was larger by 207.65% than blending film under the gelatin additive proportion of 10%.  相似文献   

4.
Starch/poly(vinyl alcohol) (PVA) films with the addition of 10 wt% CaCl2 and various content of glycerol were prepared. The effect of glycerol on the crystalline, thermal, and tensile properties of CaCl2‐doped starch/PVA films was studied by X‐ray diffraction, thermogravimetric analysis (TGA), and tensile testing, respectively. The effect of glycerol on the miscibility of CaCl2‐doped starch/PVA films was studied by scanning electron microscopy. The CaCl2‐doped starch/PVA film became more homogeneous after the addition of glycerol. The addition of glycerol would increase the crystallinity of CaCl2‐doped starch/PVA film. With the addition of 10 wt% glycerol and 10 wt% CaCl2, the starch/PVA film showed the highest degree of crystallinity. The TGA results show that the thermal stability of CaCl2‐doped starch/PVA film increased after the addition of glycerol. The toughness of CaCl2‐doped starch/PVA films was enhanced with the addition of glycerol. The starch/PVA film with the addition of 10 wt% CaCl2 and 20 wt% glycerol showed the tensile strength of 17 MPa and the elongation at break of 428%. Moreover, the water sorption of CaCl2‐doped starch/PVA film decreased after the addition of glycerol at the low and intermediate relative humidity of 33 and 54%. POLYM. COMPOS., 37:3191–3199, 2016. © 2015 Society of Plastics Engineers  相似文献   

5.
This study investigated the effects of urea/ethanolamine mixture (UE) on the crystallinity, thermal, and mechanical properties of poly(vinyl alcohol) (PVA) films. PVA films were prepared from solutions containing PVA, urea, ethanolamine, and water by casting and evaporating at 50°C for 12 h. The plasticization efficiency of UE was compared with that of glycerol (GL), the conventional plasticizer for PVA. The properties of PVA films plasticized by UE and GL, abbreviated to UE-plasticized PVA film and GL-plasticized PVA film, respectively, were investigated by Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and mechanical testing. It was proved that UE could form more stable hydrogen bonding with the hydroxyl group of PVA molecule and was more effective in breaking the hydrogen bonds between the hydroxyl groups. Thus, the crystallinity of UE-plasticized PVA films was lower than that of GL-plasticized PVA films. The melting temperatures of UE-plasticized PVA films were lower than those of GL-plasticized PVA films. It was found that UE-plasticized PVA film showed a higher degradation temperature compared with GL-plasticized PVA film. The degree of swelling of UE-plasticized PVA film was higher than that of GL-plasticized PVA film but solubility (S) of UE-plasticized PVA film was lower in aqueous solution. Furthermore, UE-plasticized PVA films show lower tensile strength and higher elongation at break (E) than those of GL-plasticized PVA films. The tensile strength, E, and Young's modulus of PVA film containing 30% UE mixture reached 50.78 MPa, 591.19% and 76.9 MPa, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
This study aims to prepare and examine the properties of poly(vinyl alcohol)/casein (PVA/CAS) based films reinforced with cellulose nanocrystals (NC), which can be presented as an alternative to petroleum-based polymer packaging materials. PVA/CAS and 0.5–1–3–5 wt% NC containing PVA/CAS biocomposite films were prepared by solution casting method. Afterward, the 1NC film, which exhibited the best mechanical properties, was crosslinked with various amounts of glyoxal. Structural, morphological (polarized optical microscope), mechanical (tensile), thermal (differential scanning calorimetry, thermogravimetric analysis), contact angle, and water vapor transmission rate (WVTR) properties of the samples were investigated. The 1NC film exhibited the highest tensile strength (TS) and elongation values in PVA/CAS/NC films, and its mechanical properties decreased due to agglomeration with increasing NC amount. As expected, crosslinking improved the TS. The thermal stability of the PVA/CAS film was generally improved with the addition of NC and crosslinking. The high WVTR value of the PVA/CAS film decreased with the addition of NC and the 1NC film presented the lowest value. Thanks to the complex structure formed as a result of crosslinking and the reduced free volume, the WVTR of the 1NC film has reduced. The results showed that PVA/CAS-based films with good mechanical properties and water vapor barrier are promising as packaging materials.  相似文献   

7.
Blend films from nature soy protein isolates (SPI) and synthetical poly(vinyl alcohol) (PVA) compatibilized by glycerol were successfully fabricated by a solution‐casting method in this study. Properties of compatibility, mechanical properties, and thermal stability of SPI/PVA films were investigated based on the effect of the PVA concentration. XRD tests confirm that the SPI/PVA films were partially crystalline materials with peaks of 2θ = 20°. And, the addition of glycerol will insert the crystalline structure and destroy the blend microstructure of SPI/PVA. Differential scanning calorimetry (DSC) tests show that SPI/PVA blend polymers have a single glass transition temperature (Tg) between 80 and 115.0°C, which indicate that SPI and PVA have good compatibility. The tension tests show that SPI/PVA films exhibit both higher tensile strength (σb) and percentage elongation at break point (P.E.B.). Thermogravimetric analysis (TGA) and water solubility tests show that SPI/PVA blend polymer has more stable stability than pure SPI. All the results reflect that SPI/PVA/glycerol blend film provides a convenient and promising way to prepare soy protein plastics for practical application. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
周庆  王岩  陈婷  徐文杰  韩士群 《塑料》2020,49(1):23-26,30
以聚乙烯醇(PVA)和水华蓝藻为主要原料,通过溶液铺膜法制备了蓝藻/PVA共混膜,采用万能试验机,研究了不同助剂对蓝藻/PVA共混膜力学性能的影响。结果表明,蓝藻的添加显著降低了共混膜的力学性能。当添加比例为PVA的1/2时,膜的拉伸强度和断裂伸长率分别比无藻处理下降了65.89%和79.57%。甘油、尿素显著提升了蓝藻/PVA共混膜的断裂伸长率,当添加比例为蓝藻的1/2时,分别能使共混膜的断裂伸长率提高73.20倍和62.02倍。虽然柠檬酸、硅烷偶联剂能够提升蓝藻/PVA共混膜的拉伸强度,但只能在低剂量时促进断裂伸长率的小幅提高,当柠檬酸添加比例为蓝藻的1/40时,膜的断裂伸长率能提高4.41倍,而当硅烷偶联剂添加比例为蓝藻的1/20时,膜的断裂伸长率能提高1.49倍。尿素与甘油复合增塑,更有利于提升共混膜的断裂伸长率。硅烷偶联剂与甘油复合增塑,更有利于提升共混膜的拉伸强度。  相似文献   

9.
To promote the heat‐sealing properties of soy protein isolate (SPI) films applied in the packaging field, we mixed a synthetic polymer of poly(vinyl alcohol) (PVA) with SPI to fabricate blend films by a solution‐casting method in this study. To clarify the relationship between the heat‐sealing properties and the heat‐sealing temperature, strength, melting process, crystalline structure, and microstructure, variations of the heat‐sealing parts of the films were evaluated by means of differential scanning calorimetry, tensile testing, scanning electron microscopy, X‐ray diffraction, and Fourier transform infrared spectroscopy, respectively. The test results showed that both the PVA and glycerol contents greatly affected the melting behavior and heat of fusion of the SPI/PVA blends; these blend films had a higher melting temperature than the pure SPI films. The peel strength and tensile strength tests indicated that the long molecular chain of PVA had a main function of enhancing the mechanical properties above the melting temperature. With increasing heat‐sealing temperature, all of the mechanical properties were affected by the microstructure of the interface between the laminated films including the chain entanglement, crystallization, and recrystallization. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Sodium alginate (SA)‐based poly(ethylene oxide) (PEO) blend films were improved by methyl acrylate (MA) monomer and γ irradiation toward practical application. The films were prepared by a casting method and modified by glycerol (Gol) and mustard oil (MO). The SA‐based films were successfully produced with γ irradiation (12 kGy) with 10% PEO, 15% Gol, 20% MO, and 7% MA on a mass basis as optimized. The tensile strength (TS), tear strength (TT), elongation at break (EB), Young's modulus, moisture content, water vapor permeability (WVP), and structural properties of the blended films were determined. The thermal properties of the films were characterized by thermogravimetric analysis, dynamic mechanical analysis, and differential scanning calorimetry, and the structural features were examined with Fourier transform infrared spectroscopy. The ultimate results of this study show a rather remarkable enhancement in the tensile properties (30% TS and 67% TT) and reduction in EB (40%) of the SA‐based films with MA addition and γ irradiation. The as‐prepared SA‐based films demonstrated considerable reductions in the moisture content and WVP and also conferred a desired stability of the films. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43562.  相似文献   

11.
Carboxymethyl cellulose (CMC) composite films were prepared from CMC solutions (2% w/v) containing multiwalled carbon nanotubes (MWCNT) as nanofiller and glycerol (25% w/w CMC) as plasticizer. Tensile strength, elongation at break (EAB), young's modulus, water solubility, water swelling, water uptake, and water vapor permeability (WVP) for CMC films were 27.5 ± 2.5 MPa, 11.2 ± 0.8%, 198 ± 18 MPa, 57 ± 1.5%, 738 ± 25%, 124 ± 4%, and 0.55 ± 0.036 g.mm/m2.kPa.h, respectively. By increasing the relative humidity from 11.4 to 85.5%, the moisture absorption (MA) of CMC films was increased from 4 to 38%. Incorporation of MWCNT into the matrix caused a significant increase in the tensile strength, decrease in EAB, increase in young's modulus, decrease in water solubility, decrease in water swelling, decrease in water uptake, and decrease in MA. CMC/MWCNT films containing 1% MWCNT showed the lowest WVP. Scanning electron microscopy showed a good dispersion of MWCNT in the CMC matrix. CMC/MWCNT films containing >1% MWCNT showed significant antibacterial activities against both Gram‐positive and Gram‐negative bacteria in a dose‐dependent manner. Thus, good mechanical properties and water resistance along with strong antibacterial activities make CMC films grafted with MWCNT as a suitable packaging material. POLYM. COMPOS., 36:145–152, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
The mechanical properties and molecular structure of a poly(vinyl alcohol) (PVA) film, which was obtained by eliminating water from a PVA hydrogel using repeated freeze/thaw cycles, were investigated by tensile tests, thermal analysis, and X‐ray diffraction measurements. The mechanical properties of PVA with 99.9% saponification were measured as a function of the number of freeze/thaw cycles performed. The tensile strength and Young's modulus increased and the elongation at break decreased with increasing freeze/thaw cycles. The tensile strength and Young's modulus of PVA films obtained after seven freeze/thaw cycles were as high as 255 MPa and 13.5 GPa after annealing at 130°C. Thermal analysis and X‐ray diffraction measurements revealed that this is because of a high crystallinity and a large crystallite size. A good relationship between the tensile strength and the glass transition temperature was obtained, regardless of the degree of saponification and annealing conditions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40578.  相似文献   

13.
This study was performed to evaluate the properties of poly(vinyl alcohol) (PVA), gelatin, and PVA–gelatin dispersions and films enriched with Zataria multiflora essential oil (ZO). The results reveal that the ζ potential, particle size, and viscosity values and the antioxidant and antibacterial activities of the dispersions changed significantly with the addition of ZO to the polymer matrix. Changes in the properties of the dispersions suggested the presence of interactions between PVA or gelatin and ZO. Such interactions could affect the mechanical and water‐barrier properties of the films. ZO induced remarkable decreases in the tensile strength, elastic modulus, and swelling and increases in the elongation at break, solubility, and water‐vapor permeability of the films. Scanning electron microscopy analyses proved the impact of ZO on the film morphology, which affected the film properties, including the mechanical and water‐barrier properties. The addition of ZO to the polymer led to a coarse film microstructure because of the hydrophobic ZO aggregates, which produced discontinuities in the film matrix. ZO considerably increased the antioxidant and antibacterial activities of the dispersions. Pseudomonas aeruginosa was the most resistant bacteria. The improved antioxidant and antimicrobial activities of the PVA–ZO and gelatin–ZO indicated that such products could effectively be used as wound dressings. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45351.  相似文献   

14.
Poly(vinyl alcohol) (PVA) melt‐spun fibers with circular cross‐section and uniform structure, which could support high stretching, were prepared by using water as plasticizer. The effects of water content on drawability, crystallization structure, and mechanical properties of the fibers were studied. The results showed that the maximum draw ratio of PVA fibers decreased with the increase of water content due to the intensive evaporation of excessive water in PVA fibers at high drawing temperature. Hot drying could remove partially the water content in PVA as‐spun fibers, thus reducing the defects caused by the rapid evaporation of water and enhancing the drawability of PVA fibers at high drawing temperature. The decreased water content also improved the orientation and crystallization structure of PVA, thus producing a corresponding enhancement in the mechanical properties of the fibers. When PVA as‐spun fibers with 5 wt % water were drawn at 180 °C, the maximum draw ratio of 11 was obtained and the corresponding tensile strength and modulus reached ~0.9 GPa and 24 GPa, respectively. Further drawing these fibers at 215 °C and thermal treating them at 220 °C for 1.5 min, drawing ratio of 16 times, tensile strength of 1.9 GPa, and modulus of 39.5 GPa were achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45436.  相似文献   

15.
Nanocomposite films for food packaging applications were developed using bacterial cellulose (BC) nanofibers in different amount in a poly(vinyl alcohol)/starch (PVA/St) matrix. In search of a better method to reduce the harmful ingredients in food packaging, the cellulose nanofibers were obtained by the mechanical defibrillation of BC pellicles thus avoiding the addition of chemicals in the final packaging material. Improved mechanical performances were obtained starting from just 1% BC nanofibers in PVA/St. Atomic force microscopy images showed a uniform dispersion of BC nanofibers on the surface of nanocomposites. A twofold increase of both tensile strength and modulus was obtained for 2 wt % BC in the composite. BC nanofibers have greatly improved the barrier properties of PVA/St matrix, a twofold increase of water vapor permeability being obtained for only 2 wt % BC nanofibers in the composite film. PVA/St/2BC was proposed as a high potential material for food packaging applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45800.  相似文献   

16.
In this study, the effect of sorbed water on the tensile mechanical properties of noncrosslinked, thermally treated poly(vinyl alcohol) (PVA) films was studied. The Young's modulus, elongation at break, and tensile strength of the PVA films equilibrated at different relative humidities (0–86%) are reported, together with the depression of the glass transition of the polymer at each equilibrating humidity, as determined by temperature‐modulated differential scanning calorimetry. The results indicate that drastic changes in the tensile properties were correlated with the transition of the hydrated polymer from the glassy to the rubbery state. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
In this study, the use of Pinhão husk as a source of reinforcement material for development of edible films, where the Pinhão seed flour and bovine gelatin were used as matrices for the films. Mechanical properties, water vapor permeability, solubility and opacity, microstructure, and thermal degradation characterized the films produced. The films presented homogeneous and cohesive structures. Pinhão husk content positively affected film properties by increasing tensile strength (TS) and decreasing water vapor permeability (WVP), with Pinhão flour film formulations (5.0% Pinhão flour, 1.2% glycerol, and 0.4% Pinhão husk) and gelatin (5.0% gelatin, 2.0% glycerol, and 0.4% Pinhão husk) those that presented the best results (5.06 MPa for TS and 0.14 g.mm/kPa.h.m2 for WVP) and (3.88 MPa for TS and 0.28 g.mm/kPa.h.m2 for WVP), respectively The thermal degradation study revealed that the films are stable at temperatures below 150°C, losing only free water and volatile compounds of low molecular weight. Pinhão husk can reinforce films, making them suitable as biodegradable and edible packaging materials for eco-friendly food products. This contributes to the circular economy, preserves biodiversity, and reduces plastic waste, offering promising sustainable packaging solutions.  相似文献   

18.
Poly(vinyl alcohol) (PVA), PVA/nanocellulose fiber (CNF), and PVA/CNF/graphene oxide (GO) films were prepared simply by casting stable aqueous mixed solutions. FTIR investigation indicated that hydrogen bonding existed between the interface of GO and PVA‐CNF. Scanning electron microscopy and X‐ray diffraction analysis showed that GO was uniformly dispersed in PVA‐CNF matrix. Introducing CNF into PVA caused a significant improvement in tensile strength, and further incorporating GO into PVA/CNF matrix led to a further increase. The tensile strength of the neat PVA film, PVA/CNF composite, and PVA/CNF/GO film (0.6 wt % GO) was 43, 69, and 80 MPa, respectively. Moreover, when incorporating 8 wt % CNF into PVA matrix, O2 permeability and water absorption decreased from 13.36 to 11.66 cm3/m2/day and from 164.2% to 98.8%, respectively. Further adding 0.6 wt % GO into PVA/CNF matrix resulted in a further decrease of permeability and water absorption to 3.19 cm3/m2/day and 91.2%, respectively. Furthermore, for all composite samples, the transmittance of visible light was higher than 67% at 800 nm. CNF and GO‐reinforced PVA with high mechanical and barrier properties are potential candidates for packaging industry. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45345.  相似文献   

19.
Water‐soluble support materials are essential for fabrication of three‐dimensional printing component, in particular of fused deposition modeling (FDM) process. Poly(vinyl alcohol) (PVA) was considered as a potential ideal candidate used in rapid prototyping technology, while its properties and process‐ability need to be improved for the wide application. This article attempts to use urea/caprolatam (UC) as modification additive for tuning the thermal and mechanical properties of PVA. PVA‐based films with different content of additives were prepared by solution casting method. The results showed that with the increase of UC, PVA films showed decreased crystallinity and melting temperature, while the initial degradation temperature and melt index were increased. The corporation of UC decreased the melting temperature to 173.04 °C and PVA composite with 4.5% crystallinity was fabricated. Due to the formation of hydrogen bonding between UC and the hydroxyl group of PVA, the tensile strength and modulus of PVA were slightly decreased, while strain‐at‐break was significantly enhanced, as high as 470.24%, indicating UC behaved as good plasticizing effect. The microstructure examination via scanning electron microscopy showed that when the content of UC was less than 30% in the composites, homogeneous phase could be observed, indicating good compatibility between these two components. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44966.  相似文献   

20.
Poly(vinyl alcohol) as pure or composite materials is widely used in the food and textile industries, andbiomedical applications due to some important properties such as uniaxial tensile, biocompatibility, and noncarcinogenicity. Investigation of the influence of the film thickness and heating on the uniaxial tensile, spectroscopic, and surface properties of PVA films investigated in this study is quite important for improving the properties of such materials and their applicability in different conditions. In this study, with the influence of heating, a necking behavior was observed at around 2% for thin films and 4–9% strain for thicker PVA films for which a kind of transition point at around 1–2% strain was observed. The mechanical strength of PVA films, strain at break, and Young's modulus were enhanced greatly as the temperature increased from 80 to around 110 °C, and then most of them decreased. The degree of crystallinity increased linearly with the heat temperature from around 36–40%. Although PVA thin films obtained a very smooth surface structure after being heated at 80 °C, with increasing heat temperature, the surface roughness of both thin and thick PVA films increased and the PVA thin films obtained more degraded film surface. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44915.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号