首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In the present study, the mechanical and thermal properties of sisal fiber‐reinforced unsaturated polyester (UP)‐toughened epoxy composites were investigated. The sisal fibers were chemically treated with alkali (NaOH) and silane solutions in order to improve the interfacial interaction between fibers and matrix. The chemical composition of resins and fibers was identified by using Fourier‐transform infrared spectroscopy. The UP‐toughened epoxy blends were obtained by mixing UP (5, 10, and 15 wt%) into the epoxy resin. The fiber‐reinforced composites were prepared by incorporating sisal fibers (10, 20, and 30 wt%) within the optimized UP‐toughened epoxy blend. Scanning electron microscopy was used to analyze the morphological changes of the fibers and the adhesion between the fibers and the UP‐toughened epoxy system. The results showed that the tensile and flexural strength of (alkali‐silane)‐treated fiber (30 wt%) ‐reinforced composites increased by 83% and 55%, respectively, as compared with that of UP‐toughened epoxy blend. Moreover, thermogravimetric analysis revealed that the (alkali‐silane)‐treated fiber and its composite exhibited higher thermal stability than the untreated and alkali‐treated fiber systems. An increase in storage modulus and glass transition temperature was observed for the UP‐toughened epoxy matrix on reinforcement with treated fibers. The water uptake behavior of both alkali and alkali‐silane‐treated fiber‐reinforced composites is found to be less as compared with the untreated fiber‐reinforced composite. J. VINYL ADDIT. TECHNOL., 23:188–199, 2017. © 2015 Society of Plastics Engineers  相似文献   

2.
采用溶液法制备了呋喃/环氧树脂/胺类固化剂的共混物。采用粘度测试仪、DSC、FT-IR、力学测试仪、SEM对共混体系的加工性、固化反应机理及固化后样品的力学性能及机理进行了研究。研究结果揭示了共混体系的固化反应机理,发现在共混体系中呋喃树脂与部分环氧树脂可以在180℃附近反应,剩余部分环氧树脂需要在更高的温度下才能进一步完全反应。共混体系具有优异的力学性能,且随着共混体系中环氧树脂含量的增多在逐渐升高,其中弯曲强度最高达到113 MPa,弯曲模量最高达到4129 MPa,冲击强度最高达到19.1kJ/m~2。对冲击断口形貌进行观察,发现共混体系浇铸体具有相分离结构是性能优异的主要原因。  相似文献   

3.
Carbon nanotube (CNT)/aramid fiber epoxy composites were produced using a new manufacturing method proposed in this study. The rheological and morphological experiments of the CNT/PEO nanocomposites indicates that the PEO nanocomposites have a good dispersion state of the CNTs. The flexural mechanical properties of the aramid fiber/CNT epoxy composites were measured. The CNTs dispersed in the epoxy resin between the aramid fibers were observed using field emission scanning electron miscroscope (FESEM). It was found that the flexural properties of the multiscale fiber‐reinforced composites were higher than those of aramid fiber/epoxy composites. POLYM. COMPOS., 28:458–461, 2007. © 2007 Society of Plastics Engineers.  相似文献   

4.
This article concerns the effectiveness of various types and degrees of surface modification of sisal fibers involving dewaxing, alkali treatment, bleaching cyanoethylation and viny1 grafting in enhancing the mechanical properties, such as tensile, flexural and impact strength, of sisal‐polyester biocomposites. The mechanical properties are optimum at a fiber loading of 30 wt%. Among all modifications, cyanoethylation and alkali treatment result in improved properties of the biocomposites. Cyanoethylated sisal‐polyester composite exhibited maximum tensile strength (84.29 MPa). The alkali treated sisal‐polyester composite exhibited best flexural (153.94 MPa) and impac strength (197.88 J/m), which are, respectively, 21.8% and 20.9% higher than the corresponding mechanical properties of the untreated sisal‐polyester composites. In the case of vinyl grafting, acrylonitrile (AN)‐grafted sisal‐polyester composites show better mechanical properties than methyl‐methacrylate (MMA)‐grafted sisal composites. Scanning electron microscopic studies were carried out to analyze the fiber‐matrix interaction in various surface‐modified sisal‐polyester composites.  相似文献   

5.
Poly(styrene‐co‐acylonitrile) was used to modify diglycedyl ether of bisphenol‐A type epoxy resin cured with diamino diphenyl sulfone and the modified epoxy resin was used as the matrix for fiber‐reinforced composites (FRPs) to get improved mechanical properties. E‐glass fiber was used as fiber reinforcement. The tensile, flexural, and impact properties of the blends and composites were investigated. The blends exhibited considerable improvement in mechanical properties. The scanning electron micrographs of the fractured surfaces of the blends and tensile fractured surfaces of the composites were also analyzed. The micrographs showed the influence of morphology on the properties of blends. Results showed that the mechanical properties of glass FRPs increased gradually upon fiber loading. Predictive models were applied using various equations to compare the mechanical data obtained theoretically and experimentally. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
《Polymer Composites》2017,38(4):736-748
In the present study, two sets of jute epoxy composites are fabricated by varying first fiber loading from 10 to 50 wt% at an interval of 10 wt% and then granite powder incorporated from 0 to 24 wt% in an interval of 8 wt% in the composites. The initial study is to prepare polymeric composites for wind turbine blade application and study the following physical to thermo‐mechanical properties including fracture toughness of the composites. The void content of the unfilled composites show in decreasing order (from 6.37 to 3.07%) with the increasing in fiber loading which satisfied well with the increasing in tensile strength from 28.33 to 34.2 MPa and flexural strength from 44.2 to 97.8 MPa, respectively. As far as particulate filled composites the void content shows reverse in trend (from 2.99% to 9.68%) with the increasing in filler content and which justifies the mechanical properties i.e tensile strength decreases from 33.72 to 32.27 MPa and similarly in case of flexural strength also. Whereas, hardness shows a unique behavior both in fiber reinforced and particulate filled composites in an increasing order from 29 to 44 Hv, respectively. Fracture toughness is observed to be constant for all considered crack lengths however, its value significantly improved with both type of reinforcement. The dynamic mechanical analysis shows positive effect of both the reinforcement for mechanical performance under cyclic stresses. Finally, Cole–Cole plot is drawn from the dynamic mechanical analysis results to verify the homogeneity of the composites. POLYM. COMPOS., 38:736–748, 2017. © 2015 Society of Plastics Engineers  相似文献   

7.
Hybrid composites of polypropylene reinforced with glass fibers and basalt fibers were fabricated by vented injection molding machine which is named the direct fiber feeding injection molding (DFFIM) process. Polyamide 6 and maleic anhydride‐grafted polypropylene has been used as a coupling agent to improve the interfacial bonding between the fibers and matrix. Two types of vented injection molding machines with a different check ring and mold were used for making specimens. The fiber lengths were analyzed to identify the most suitable check ring and mold for the DFFIM process. The mechanical properties of the hybrid composites were investigated by tensile, flexural and Izod impact tests. The interfacial morphology of the fractured tensile specimens was studied by using scanning electron microscopy and showed that there is a fiber agglomeration phenomenon that occurs in the hybrid composites, and it has a significant effect on the mechanical properties of hybrid composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45472.  相似文献   

8.
Flyash, a waste product generated in large quantities in thermal power plants, has been posing problems of disposal. The purpose of the present work was to make a meaningful utilization of flyash as filler in neat epoxy resin matrix and 2% Polybutyleneterepthalate (PBT)/epoxy blend matrix. For this purpose, the tensile, flexural, compression, impact, chemical resistance, and water absorption properties were studied. Composites were made with varying proportion of flyash in epoxy resin and 2% PBT/epoxy blend matrix. Tensile, flexural, and compression properties were measured on a computerized universal testing machine, according to ASTM procedures. Impact strength was determined using izod impact tester for un‐notched specimens. PBT (2%)/epoxy blend matrix composites showed improved mechanical properties over neat epoxy flyash composites. All the composites were found to have good chemical resistance toward acids, solvents, and alkalies. These composites showed better water resistance over neat epoxy flyash composites. POLYM. ENG. SCI. 46:946–953, 2006. © 2006 Society of Plastics Engineers  相似文献   

9.
In some technical areas, mainly in the automotive industry, glass fiber reinforced polymers are intended to be replaced by natural fiber reinforced polymer systems. Therefore, higher requirements will be imposed to the physical fiber properties, fiber‐matrix adhesion, and the quality assurance. To improve the properties of epoxy resins (EP) and polypropylene (PP) composites, flax and hemp fibers were modified by mercerization and MAH‐PP coupling agent was used for preparing the PP composites. The effects of different mercerization parameters such as concentration of alkali (NaOH), temperature, and duration time along with tensile stress applied to the fibers on the structure and properties of hemp fibers were studied and judged via the cellulose I–II lattice conversion. It was observed that the mechanical properties of the fibers can be controlled in a broad range by using appropriate mercerization parameters. Unidirectional EP composites were manufactured by the filament winding technique; at the PP matrix material, a combination with a film‐stacking technique was used. The influence of mercerization parameters on the properties of EP composites was studied with hemp yarn as an example. Different macromechanical effects are shown at hemp‐ and flax‐PP model composites with mercerized, MAH‐PP‐treated, or MAH‐PP‐treated mercerized yarns. The composites' properties were verified by tensile and flexural tests. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2150–2156, 2004  相似文献   

10.
Biocomposites are prepared from a cheap, renewable natural fiber, coir (coconut fiber) as reinforcement with a biodegradable polyester amide (BAK 1095) matrix. In order to have better fiber‐matrix interaction the fibers are surface modified through alkali treatment, cyanoethylation, bleaching and vinyl grafting. The effects of different fiber surface treatments and fiber amounts on the performance of resulting bio‐composites are investigated. Among all modifications, cyanoethylated coir‐BAK composites show better tensile strength (35.50 MPa) whereas 7% methyl methacrylate grafted coir‐BAK composites show significant improvement in flexural strength (87.36 MPa). The remarkable achievement of the present investigation is that a low strength coir fiber, through optimal surface modifications, on reinforcement with BAK show an encouraging level of mechanical properties. Moreover, the elongation at break of BAK polymer is considerably reduced by the incorporation of coir fibers from nearly 400% (percent elongation of pure BAK) to 16‐24% (coir‐BAK biocomposites). SEM investigations show that surface modifications improve the fiber‐matrix adhesion. From biodegradation studies we find that after 52 days of soil burial, alkali treated and bleached coir‐BAK composites show significant weight loss. More than 70% decrease in flexural strength is observed for alkali treated coir‐BAK composites after 35 days of soil burial. The loss of weight and the decrease of flexural strength of degraded composites are more or less directly related.  相似文献   

11.
A new kind of high performance bismaleimide resin with good processability and improved toughness is synthesized by chemical modification of 4,4′‐bismaleimidodiphenylmethane (BMI) by eugenol (EG) and different contents of 4,4′‐diphenylmethane diisocyanate (MDI). MDI‐EG‐BMI resins exhibit good thermal stability for its 5% weight loss temperatures around 300 °C and its residue of 41.61% at 900 °C, which are much higher than those of EG‐BMI resin. Then, the carbon fiber‐reinforced MDI‐EG‐BMI composites are fabricated. The mechanical properties of the composites matrixed by MDI‐EG‐BMI resins are better than those by EG‐BMI resin. For carbon/MDI‐EG‐BMI composites, their glass transition temperatures are higher than 300 °C, and their flexural strength, moduli, and toughness are maintained at a range of 217.47–404.36 MPa, 35.12–48.49 GPa, and 1.16–2.63 MJ m?3 respectively; with the contents increasing of MDI in the resin formulation, the flexural properties first increase then decrease; comprehensively the composite with 30 wt% MDI has the best mechanical and thermal properties.  相似文献   

12.
Wood‐based epoxy resins were synthesized from resorcinol‐liquefied wood. Wood was first liquefied in the presence of resorcinol with or without a sulfuric acid catalyst at high temperature. Because of the hydroxyl groups, the resorcinol‐liquefied wood was considered as a precursor for synthesizing wood‐based epoxy resin. Namely, the phenolic OH groups of the liquefied wood reacted with epichlorohydrin under alkali condition. By the glycidyl etherification, epoxy functionality was introduced to the liquefied wood. The epoxy functionality of the resins was controlled by the concentration of phenolic OH groups in the liquefied wood, which would be a dominant factor for crosslink density and properties of the cured epoxy resins. The flexural strength (150–180 MPa) and the modulus of elasticity (3.2 GPa) of the highly crosslinked wood‐based epoxy resin were equivalent to those of the commercially available epoxy resin, diglycidyl ether of bisphenol A (DGEBA). Also, the shear adhesive strength of the wood‐based epoxy resin was higher than that of DGEBA when plywood was used as the adhesive substrates. The mechanical and adhesive properties suggested that the wood‐based epoxy resins would be well suited for matrix resins of natural plant‐fiber reinforced composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2285–2292, 2006  相似文献   

13.
Epoxy, prepared through aminomethyl 3,5,5‐trimethylcyclohexylamine hardening of diglycidylether of bisphenol‐A (DGEBA) prepolymer, toughened with polycarbonate (PC) in different proportions, and reinforced with carbon fiber, was investigated by differential scanning calorimetry, tensile and interlaminar shear strength testing, and scanning electron microscopy (SEM). A single glass transition temperature was found in all compositions of the epoxy/PC blend system. The tensile properties of the blend were found to be better than that of the pure epoxy matrix. They increased with PC content up to 10%, beyond which they decreased. The influence of carbon fiber orientation on the mechanical properties of the composites was studied, where the fiber content was kept constant at 68 wt %. Composites with 45° fiber orientation were found to have very weak mechanical properties, and the mechanical properties of the blend matrix composites were found to be better than those of the pure epoxy matrix composites. The fracture and surface morphologies of the composite samples were characterized by SEM. Good bonding was observed between the fiber and matrix for the blend matrix composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3529–3536, 2006  相似文献   

14.
《Polymer Composites》2017,38(7):1396-1403
During the last few years, natural fiber composites are replacing synthetic fiber composites for practical applications due to their advantages like low density, light weight, low cost, biodegradability and high specific mechanical properties. In this connection, the present investigation deals with the fabrication and mechanical properties of unidirectional banana/jute hybrid fiber reinforced composites and compares with the single natural fiber reinforced composites. The physical and mechanical properties of the natural fiber composites were obtained by testing the composite for density, tensile, flexural, inter‐laminar shear, impact, and hardness properties. The composite specimens with different weight percentages of fibers were fabricated by using hand lay‐up technique and testing were carried out as per ASTM standards. Incorporation of both the fibers into epoxy matrix resulted in an increase in mechanical properties up to 30 wt% of fiber loading. It is found that the hybrid composite give encouraging results when compared with the individual fiber composites. The morphologies of the composites are also studied by scanning electron microscope. POLYM. COMPOS., 38:1396–1403, 2017. © 2015 Society of Plastics Engineers  相似文献   

15.
This study aims to investigate the thermo‐physical, mechanical, and thermal degradation properties of betel nut husk (BNH) fiber reinforced vinyl ester (VE) composites. These properties were evaluated as a function of fiber maturity, fiber content, and fiber orientation. Thermo‐physical properties were analyzed experimentally using a hot disk TPS method. The introduction of BNH was found to reduce the thermal conductivity of neat VE. The thermal conductivity and thermal diffusivity of BNH reinforced VE composites decreased with the increase in fiber content. Short fiber BNH reinforced VE composites showed the lowest thermal conductivity as compared to the unidirectional and random nonwoven composites. The TGA analysis shows lower resin transition peak for the BNH reinforced VE composites than the peak of neat VE. Fiber maturity had a notable effect on the flexural modulus of the BNH fiber reinforced VE composites. Incorporation of 10 wt% BNH fibers into the composite has increased the composites' flexural modulus by 46.37%. However, further increases in the fiber content reduced both flexural strength and modulus of the composites. POLYM. COMPOS., 37:2008–2017, 2016. © 2015 Society of Plastics Engineers  相似文献   

16.
This paper is to study the effect of basalt fiber on morphology, melting and crystallization, structure, mechanical properties, melting and crystallization of PVDF/PMMA composites using scanning electron microscopy (SEM), X‐ray, differential scanning calorimeter (DSC), dynamical mechanical analysis (DMA), etc. Basalt fiber may disperse well in PVDF/PMMA matrix and form compact fiber network, and this makes tensile and flexural strength of fiber reinforced PVDF/PMMA composites get to the maximum value of 62 and 102 MPa, respectively. However, the mechanical properties begin to decrease when basalt fiber content exceeds 20 wt %. The α and β phase of PVDF can coexist in composites, and basalt fiber and PMMA can induce β phase of PVDF. The melting temperature of PVDF in composites is kept unchanged, but the degree of crystallinity of composites increases as basalt fiber content increase, and then declines when fiber content exceeds 20%. The DSC results confirm that the nucleation ability of PVDF is enhanced by basalt fiber. Also, the heat resistance of PVDF/PMMA composite is improved from 133 to 146.1°C due to basalt fiber. The DMA shows that basalt fiber increases the storage modulus of PVDF/PMMA composite, and the loss peak of PMMA increases from 116.1 to 130°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40494.  相似文献   

17.
Fiber/filler reinforced polymer composites are known to possess high strength and attractive wear resistance in dry sliding conditions. How these composites perform in abrasive wear situations needs a proper understanding. Hence, in this research article the mechanical and three‐body abrasive wear behaviour of E‐glass fabric reinforced epoxy (G‐E) and silicon carbide filled E‐glass fabric reinforced epoxy (SiC‐G‐E) composites are investigated. The mechanical properties were evaluated using Universal testing machine. Three‐body abrasive wear tests are conducted using rubber wheel abrasion tester wherein two different loads and four varying abrading distances are employed. The results showed that the wear volume loss is increased with increase in abrading distance and the specific wear rate decreased with increase in abrading distance/load. However, the presence of SiC particulate fillers in the G‐E composites showed a promising trend. The worn surface features, when examined through scanning electron microscopy, show higher levels of broken glass fiber in G‐E system compared to SiC‐ filled G‐E composites. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

18.
Miscanthus fibers reinforced biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) matrix‐based biocomposites were produced by melt processing. The performances of the produced PBAT/miscanthus composites were evaluated by means of mechanical, thermal, and morphological analysis. Compared to neat PBAT, the flexural strength, flexural modulus, storage modulus, and tensile modulus were increased after the addition of miscanthus fibers into the PBAT matrix. These improvements were attributed to the strong reinforcing effect of miscanthus fibers. The polarity difference between the PBAT matrix and the miscanthus fibers leads to weak interaction between the phases in the resulting composites. This weak interaction was evidenced in the impact strength and tensile strength of the uncompatibilized PBAT composites. Therefore, maleic anhydride (MAH)‐grafted PBAT was prepared as compatibilizer by melt free radical grafting reaction. The MAH grafting on the PBAT was confirmed by Fourier transform infrared spectroscopy. The interfacial bonding between the miscanthus fibers and PBAT was improved with the addition of 5 wt % of MAH‐grafted PBAT (MAH‐g‐PBAT) compatibilizer. The improved interaction between the PBAT and the miscanthus fiber was corroborated with mechanical and morphological properties. The compatibilized PBAT composite with 40 wt % miscanthus fibers exhibited an average heat deflection temperature of 81 °C, notched Izod impact strength of 184 J/m, tensile strength of 19.4 MPa, and flexural strength of 22 MPa. From the scanning electron microscopy analysis, better interaction between the components can be observed in the compatibilized composites, which contribute to enhanced mechanical properties. Overall, the addition of miscanthus fibers into a PBAT matrix showed a significant benefit in terms of economic competitiveness and functional performances. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45448.  相似文献   

19.
《Polymer Composites》2017,38(7):1474-1482
Functionalized silicon dioxide nanoparticles (nano‐fSiO2) were uniformly deposited on the surface of carbon fibers (CFs) using a coating process which consisted of immersing the fibers directly in a suspension of nano‐fSiO2 particles and epoxy monomers in 1‐methyl‐2‐pyrrolidinone (NMP). The 0° flexural properties, 90° flexural properties, and Interlaminar shear strength (ILSS) mechanical properties of unidirectional epoxy composites made with nano‐fSiO2+epoxy sized carbon fibers, with control fibers, and with epoxy‐only sized fibers were measured and compared. An obvious increase of the fiber/matrix adherence strength was obtained with the nano‐fSiO2+epoxy coating. The nano‐fSiO2+epoxy sized CF/epoxy composites showed a relative increase of 15%, 50%, and 22% in comparison to control fibers, for the Interlaminar shear strength, the 90° flexural strength and the 90° flexural modulus, respectively, but little e difference was measured between the different systems for the 0° flexural properties. The observation of the fracture surfaces by scanning electron microscopy of composite fracture confirmed the improvement of the interfacially dependent mechanical properties. POLYM. COMPOS., 38:1474–1482, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
In this study, the effects of fiber surface modification and hybrid fiber composition on the properties of the composites is presented. Jute fibers are cellulose rich (>65%) modified by alkali treatment, while the lignin rich (>40%) coconut coir fibers consist in creating quinones by oxidation with sodium chlorite in the lignin portions of fiber and react them with furfuryl alcohol (FA) to create a coating around the fiber more compatible with the epoxy resins used to prepare polymer composites. The maximum improvement on the properties was achieved for the hybrid composite containing the jute–coir content of 50 : 50. The tensile and flexural strength are recorded as 25 and 63 MPa at modified coir fiber content of 50 vol %, respectively, which are 78% and 61% higher than those obtained for unmodified fiber reinforced composites, i.e., tensile and flexural strength are 14 and 39 MPa, respectively. The reinforcement of the modified fiber was significantly enhanced the thermal stability of the composites. SEM features correlated satisfactorily with the mechanical properties of modified fiber reinforced hybrid composites. SEM analysis and water absorption measurements have confirmed the FA-grafting and shown a better compatibility at the interface between chemically modified fiber bundles and epoxy novolac resin. Hailwood–Horrobin model was used to predict the moisture sorption behavior of the hybrid composite systems. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号