首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
对活性粉末混凝土(RPC)立方体试件高温后抗压强度进行了测试,探讨了钢纤维掺量对RPC爆裂性能及抗压强度的影响。结果表明,钢纤维可以有效提高RPC常温及高温后的抗压强度,2%~3%的钢纤维掺量可以有效防止RPC在较高温度下发生爆裂。20~300℃时,RPC高温后抗压强度随着温度的升高不断提高,最大增幅可达24.55%;300~800℃时,RPC高温后抗压强度随着温度的升高不断降低,经受800℃高温的RPC最低残余强度仅为19.2%。基于试验结果,通过回归分析给出了钢纤维掺量为2%~3%的RPC高温后抗压强度计算公式。  相似文献   

2.
采用40mm×40mm×160mm棱柱体试件,研究了高温后大掺量粉煤灰-应变硬化水泥基复合材料(HVFA-SHCC)的单轴压缩力学性能,探讨了不同目标温度(100、200、400、600、800℃)和不同冷却方式(自然冷却、浸水冷却)条件下HVFA-SHCC试件抗压强度、弹性模量、压缩韧性、破坏模式及质量的变化.采用扫描电子显微镜(SEM)对试件的微观结构进行分析,获得了高温后HVFA-SHCC单轴压缩性能的劣化机理.结果表明:当温度低于200℃时,温度对试件力学性能及质量损失的影响较小;400~800℃时,试件内部结构变得疏松,残余力学性能劣化严重,尤其是800℃时,试件的抗压强度仅为常温状态的39.9%,弹性模量为常温状态的32.3%,压缩韧性指数为常温状态的59.0%,质量损失率达15.5%;浸水冷却试件的残余力学性能得到了一定程度的提高.同时,基于试验结果,建立了高温后HVFA-SHCC的单轴压缩本构方程.  相似文献   

3.
张白  陈俊  杨鸥  蒋恩浩  马禹 《建筑结构》2019,49(4):76-81
为研究混凝土高温后质量损失及抗压强度的退化规律,对高温后混凝土立方体试件的质量损失和抗压性能进行了测试,分析了温度对混凝土的质量损失和抗压强度的影响以及高温后混凝土的受压破坏特征。研究结果表明,随着温度的升高,混凝土的质量损失逐渐增大而抗压强度整体呈下降趋势,800℃的高温作用后混凝土抗压强度基本丧失,相比于常温其损失程度高达85.4%;总体而言,混凝土抗压强度随温度升高而减小的幅度与质量损失率随温度升高而增大的幅度基本一致。通过对试验数据的拟合回归分析,建立了混凝土抗压强度与温度、质量损失率与温度及抗压强度与质量损失率之间的计算公式,可利用所提出的公式通过混凝土质量损失或受火温度来初步预估火灾后混凝土结构的剩余抗压强度。  相似文献   

4.
以受火温度、石粉含量为变化参数,设计并制作了210个100 mm×100 mm×100 mm的机制砂混凝土立方体试件,对其进行高温后的物理力学性能试验,获取了试件的质量损失率以及抗压强度和劈裂抗拉强度,建立了机制砂混凝土高温后抗压强度和劈裂强度的劣化模型,同时结合X射线衍射和扫描电子显微镜等技术,揭示了高温后机制砂混凝土力学性能劣化的微观机理。基于最高受火温度和质量损失率,分别提出了高温后机制砂混凝土抗压强度和劈裂抗拉强度评估计算式。结果表明:随着温度的升高,机制砂混凝土试件的表面颜色从灰色变成红褐色,最后呈白色,高温作用使试件表面出现了温度裂缝及剥落现象; 试件的质量损失率随着石粉含量的增加而增大; 混凝土抗压强度和劈裂抗拉强度随着温度的升高显著减小; 随着石粉含量的增加,混凝土抗压强度和劈裂抗拉强度先增大后减小,当石粉含量(质量分数)为10%时,混凝土强度达到最大值; 基于试验结果建立的高温后机制砂混凝土抗压强度和劈裂抗拉强度的劣化模型拟合度较好; 混凝土中掺入适量的石粉能促进体系中钙钒石和氢氧化钙等水化产物数量,当经受700 ℃高温后,水泥水化物脱水分解使混凝土内部裂缝和孔隙增多。  相似文献   

5.
采用不同替代率沙漠砂制备沙漠砂混凝土,研究其高温后经二次养护抗压性能。通过高温后沙漠砂混凝土抗压强度试验,分析试件质量损失变化及温度、沙漠砂替代率对抗压强度影响;通过二次养护后抗压强度及SEM试验,分析二次养护龄期和方式对沙漠砂混凝土抗压强度和微观结构影响。试验结果表明:随温度升高,沙漠砂混凝土质量损失率逐渐增大,抗压强度逐渐减小;随沙漠砂替代率增加,抗压强度呈先增大后减小趋势;高温后沙漠砂混凝土内部孔洞、微裂缝数量增多,微观结构劣化严重。高温后沙漠砂混凝土经过二次养护,随养护龄期增加,抗压强度恢复率呈先增大,到达峰值后呈下降或持平趋势。  相似文献   

6.
为探究高温对页岩陶粒轻骨料混凝土(SCLAC)蠕变特性的影响,进行了室温至800℃后SCLAC单轴压缩试验、分级压缩蠕变试验和扫描电镜(SEM)试验,分析了SCLAC质量损失、抗压强度损失、蠕变特性及微观结构特征.结果 表明:随温度升高,SCLAC的内部微观结构变得疏松,质量、抗压强度逐渐降低,800℃后质量损失率为9.54%,抗压强度损失率为63.88%;随温度升高和应力水平增加,蠕变应变和蠕变速率增大,蠕变历时和蠕变破坏临界应力水平减小;温度高于600℃时蠕变应变明显增大,在相同应力水平下,与室温相比600℃后的蠕变应变增加了82.76%.基于试验结果对Burgers蠕变模型参数进行辨识,所得理论曲线与减速蠕变阶段和等速蠕变阶段的试验数据吻合较好.  相似文献   

7.
对不同钢纤维体积掺量的掺入引气剂的活性粉末混凝土(简称RPC)试件及未掺引气剂的RPC试件进行了高温后力学性能测试和质量测量,考察了RPC在掺入引气剂或未掺引气剂时,受火温度对不同钢纤维体积掺量的RPC试件的抗压强度、抗折强度、折压比及质量损失的影响。试验结果表明,未掺引气剂的RPC在超过200℃时爆裂,且在200℃之前强度变化趋势与掺引气剂RPC的强度变化趋势一致。随着试件所受高温温度的升高,试件强度整体呈现阶梯下降趋势;400℃以前,钢纤维体积掺量对RPC强度影响甚微,400℃以后,钢纤维体积掺量越高,残余强度百分比越大。不同钢纤维体积掺量RPC试件的质量损失率趋势一致,纤维掺量对RPC质量损失率影响不大。  相似文献   

8.
研究了不同机制砂取代率对混凝土表观密度和高温后混凝土试件颜色变化、质量损失以及抗压强度的影响,建立了机制砂取代率与混凝土的表观密度、不同机制砂取代率下的温度与混凝土的质量损失率、不同机制砂取代率下的温度与混凝土的抗压强度损失的关系。结果表明:随着机制砂取代率的提高,混凝土的表观密度逐渐增大;当温度为200~1 000℃时,混凝土试件颜色由灰色变至红色再到白色,且温度越高试件开裂及脱落现象越严重,质量损失也越大,全机制砂混凝土的质量损失低于全河砂混凝土;当温度为200℃时,混凝土的抗压强度损失率逐渐降低;当温度超过200℃时,混凝土的抗压强度损失率先升高后降低,20%机制砂取代率下,其抗压强度损失率最高,全河砂混凝土的抗压强度损失率最低;基于试验数据建立的拟合函数的拟合度较高。  相似文献   

9.
通过制备不同水胶比的RPC120级活性粉末混凝土,研究了不同水胶比的RPC试件在200~1 000℃内抗高温爆裂性能及强度和质量损失率随温度的变化规律。对高温后试件进行了断面结构观察,并结合热重分析(TG)及差示扫描量热分析(DSC),研究了RPC高温作用后的性能变化机理。结果表明,水胶比在0.18~0.21范围内,0.18组的RPC抗高温爆裂能力及力学性能是最优的;不同水胶比的RPC强度随着受热温度的升高,都呈现出先增大再减小的趋势,抗压强度的临界温度为300℃,抗折强度的临界温度为200℃。在20~300℃,RPC高温性能的变化是由水化产物中自由水和结合水的失去所致,300~1 000℃是水化产物的分解和钢纤维的氧化造成的。  相似文献   

10.
通过试验研究了活性粉末混凝土(RPC)在冻融循环和氯盐侵蚀耦合作用下的质量损失率、相对动弹性模量、抗压强度和氯离子含量。结果表明,冻融循环和氯盐侵蚀耦合作用下,随着耦合次数的增大,RPC质量损失率迅速增加,相对动弹性模量、抗压强度迅速下降;随着扩散深度的增大,RPC氯离子含量逐渐下降;随着冻融循环次数的增加,RPC试件在不同深度处的氯离子含量逐渐增大。钢纤维的掺入有利于提高RPC抵抗耦合作用的能力,随着钢纤维掺量的增加,耦合作用后RPC质量损失率逐渐减小,相对动弹性模量降幅和抗压强度降幅均有所下降,抗氯离子渗透的性能增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号