首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apigenin, a flavinoid, and lovastatin, an HMG-CoA reductase inhibitor, upregulated gap junction (GJ) function and dye transfer in tumors expressing GJ and were inactive in the GJ-negative tumor line N2a. N2a cells transfected with the connexin 43 gene showed restored cell-to-cell dye transfer, which could then be improved nearly fourfold by addition of apigenin. To test the drugs in HSV thymidine kinase/ganciclovir (HSV-tk/GCV) tumor killing, mixtures of 90% wild-type (WT) with 10% HSV-tk gene-modified MCA38 adenocarcinoma cells were exposed in vitro to GCV +/- apigenin or lovastatin. A significant bystander effect (BSE) was seen following GCV treatment alone, while neither apigenin or lovastatin alone had any effect on the recovery of viable tumor colonies. However, GCV-treated cultures also exposed to apigenin or lovastatin showed an increased BSE and reduced tumor cell recovery. Thirty percent of mice bearing tumors from the same mixture of 90% WT and 10% HSV-tk MCA38 cells treated with GCV alone became tumor free. Tumor-bearing mice given only two or three injections of lovastatin or apigenin during GCV treatment had a doubling of the antitumor response rate, with 60-70% of the mice achieving complete remission. These results support the hypothesis that the transfer of phosphorylated GCV from HSV-tk gene-expressing cells to neighboring WT tumor cells is a major component of the BSE and that pharmacological manipulation of GJ function with lovastatin or apigenin can result in striking improvement in the antitumor response in mice with tumors modified to contain as few as 10% HSV-tk cells.  相似文献   

2.
Metastases of breast cancer are a major cause of treatment failure. To evaluate the therapeutic efficacy of suicide gene therapy in metastatic breast cancer, we used the herpes simplex virus thymidine kinase (HSV-tk) gene followed by ganciclovir (GCV) administration to treat breast cancer, generated by an adenocarcinoma cell line MOD in syngeneic mice. The bystander effect of HSV-tk + GCV on tumor cell killing was illustrated by demonstrating complete regression of subcutaneous tumors consisting of 90% parental tumor cells and 10% HSV-tk transformed tumor cells. To establish a model of breast cancer metastases in the liver, tumors were generated by intra-hepatic implantation of MOD cells in syngeneic animals. Two weeks after tumor cell implantation, replication defective adenoviral vectors expressing HSV-tk (ADV.tk), or beta-galactosidease (ADV. beta-Gal) were injected intratumorally, followed by buffer or GCV administration. Treatment with ADV.tk + GCV resulted in significant regression of tumor (P < .001), as assessed by computerized morphometric analysis of residual tumor. This was reflected as a significant prolongation of survival in treated animals (P < .001). These results demonstrate that ADV-mediated suicide gene therapy in vivo can be incorporated in a comprehensive treatment strategy for liver metastases of breast cancer.  相似文献   

3.
Ovarian cancer is a major clinical problem with no rewarding treatment protocol currently available. In other malignancies transfer of the herpes simplex virus thymidine kinase (HSV-tk) gene into tumor cells using a viral vector followed by administration of ganciclovir (GCV) provides a potentially effective strategy for treatment. In this work human ovarian epithelial cancer cell lines were infected with a recombinant adenoviral vector expressing the HSV-tk (AdRSV-tk) and were rendered sensitive to doses of GCV that were 100-200 times less than for untransfected cells. A strong bystander effect was noted with significant killing at a ratio of infected:uninfected cells of only 1:20 and maximal killing at 1:3. Normal human ovarian surface epithelial cells were also highly sensitive to the AdRSV-tk/GCV system. This study demonstrates the potential efficacy of the HSV-tk/GCV approach in ovarian cancer gene therapy.  相似文献   

4.
The ability of herpes simplex virus type 1 thymidine kinase (HSV-TK)-expressing cells incubated with ganciclovir (GCV) to induce cytotoxicity in neighboring HSV-TK-negative (bystander) cells has been well documented. Although it has been suggested that this bystander cell killing occurs through the transfer of phosphorylated GCV, there is little direct proof that bystander cells can accumulate GCV nucleotides. We have studied the ability of U251 human glioblastoma cells expressing HSV-TK (U251tk cells) to induce cytotoxicity in neighboring U251 bystander cells that lack the viral kinase (U251beta gal cells) and evaluated whether this bystander cell killing is mediated by GCV nucleotides. The cytotoxicity studies demonstrated that the ratio of HSV-TK-expressing cells:bystander cells was important in determining the sensitivity of both cell types to GCV. U251tk cells cocultured with an equal number of U251beta gal cells (a 50:50 ratio) exhibited a sensitivity to GCV similar to that observed in the absence of bystander cells, with >99.8% cell kill at 1 microm GCV. However, in cultures with 10% U251tk cells and 90% bystander cells (a 10:90 ratio), 1 microM GCV decreased the survival of U251tk cells by only 54%. Strong bystander cell killing was observed at both ratios. In a 50:50 coculture of U251tk and U251beta gal cells, the survival of bystander cells was decreased by >99.5% with 3 microM GCV, whereas 30 microM GCV was required to effect a similar decrease in bystander cell survival when 90% of the culture consisted of U251beta gal cells. To determine whether this bystander cell killing may be mediated by GCV nucleotides, we developed a technique to separate the two cell populations after coculture. A U251 bystander cell line was developed from the parental cell line by transfection with the cDNA coding for green fluorescent protein (U251gfp cells), which permitted the separation of U251gfp cells from nonfluorescing U251tk cells by flow cytometry with cell sorting. With this technique, bystander cells were isolated in a viable state with >97% purity within 1 h after harvest, permitting analysis of the nucleotide pools for the presence of phosphorylated GCV. The results demonstrated that significant levels of the triphosphate of GCV (GCVTP) accumulated in bystander cells within 4 h of coculture, and this accumulation was dependent upon the percentage of HSV-TK-expressing cells as well as the concentration of GCV and the length of incubation. The proportion of GCVTP in bystander cells was consistently 50-80% of that in HSV-TK-expressing cells in the 50:50 or 10:90 cocultures, suggesting a facile transfer of phosphorylated GCV. However, the actual amount of GCVTP was as much as 8-fold lower in both the U251tk and U251beta gal cells cocultured at a ratio of 10:90 compared to those cocultured at a ratio of 50:50, which is consistent with the lesser effect on cell survival. When U251tk and U251gfp cells were cultured with 1-beta-D-arabinofuranosylthymine (araT), the 5'-triphosphate of araT accumulated in the bystander cells, demonstrating that the transfer of phosphorylated compounds between these cell types is not restricted to GCV nucleotides. However, the proportion of araT-5'-triphosphate in bystander cells compared to that in HSV-TK-expressing cells was lower than that for GCVTP, and the amount was not sufficient to decrease survival in the bystander population.  相似文献   

5.
Transfer of the herpes simplex thymidine kinase (HSV-TK) gene into tumor cells confers sensitivity to the cells to the viral drug ganciclovir (GCV). Although the efficacy of the HSV-TK/GCV approach is well studied, the mechanisms for the resistance of HSV-TK-transduced tumor cells to GCV are poorly understood. Here, we examined the mechanisms for GCV resistance in HSV-TK-transduced gastrointestinal (GI) cell lines. Our results show that GCV sensitivities vary in vitro and in vivo among the different HSV-TK-transduced GI tumor cell lines. GCV-resistant colonies were isolated from several different HSV-TK-transduced GI tumor cell lines after 14 days of GCV treatment. Characterization of GCV-resistant colonies demonstrated that the HSV-TK gene was either partially or completely deleted from the resistant HSV-TK-transduced cells. In the HT-29 RM and MIAPACA-2 RM cells, a 220-bp deletion of the gene was found, whereas in the HT-29 R1-R5-resistant cells, the whole TK gene was found to be absent. Immunocytochemical studies using a polyclonal antibody to the TK protein demonstrated that the HSV-TK protein was absent in the GCV-resistant, HSV-TK-transduced cells. Transfection of the resistant cells with an adenoviral vector containing a HSV-TK gene restored sensitivity to GCV. The presence of GCV-resistant cells was only demonstrable in GI tumor cell lines that also demonstrated a poor bystander effect. Our results suggest that GCV resistance found in tumor cells transduced with a retroviral HSV-TK gene is due to the lack of a functional TK protein in the tumor cells rather than any intrinsic resistance of the cells to GCV. In tumor cells with a good bystander effect, the small percentage of TK-transduced cells that do not express the TK protein are probably killed by the bystander effect because GCV-resistant tumor cells were not found in these cell lines. GCV-resistant tumor cells were found only in tumor cell lines with a poor bystander effect, by which, presumably, the transduced tumor cells lacking a functional TK gene were not killed by the bystander killing effect.  相似文献   

6.
Herpes simplex virus thymidine kinase (HSV-tk) gene therapy for brain tumors depends on ganciclovir (GCV) and its transport across the blood-brain tumor barrier (BBTB). We examined whether RMP-7, the bradykinin analog and potent BBTB permeabilizer, could enhance the efficacy of GCV treatment of brain tumors by increasing the BBTB delivery of GCV. In vitro, a significant bystander cytocidal effect of GCV was shown in mixed HSV-tk-transduced (HSV-tk+) and control vector-transduced (HSV-tk-) C6 glioma cultures. A dose-dependent cytotoxic effect of GCV on untransformed C6 cells was also shown. In vivo, rats with 100% HSV-tk+ or 100% HSV-tk- intracerebral C6 gliomas were treated for 7 days with intravenous infusions of GCV alone or with GCV and RMP-7 (2.5 microg/kg/day). The growth of HSV-tk+ and HSV-tk- gliomas decreased with increasing doses of GCV. A high dosage (100 mg of GCV/kg/day) eradicated all HSV-tk- and HSV-tk+ tumors. An intermediate dosage (5 mg of GCV/kg/day) reduced the growth of HSV-tk- gliomas by 42% if given alone, and by 88% in combination with RMP-7. A low dosage (0.5 mg of GCV/kg/day) in combination with RMP-7 enhanced the regression of HSV-tk+ gliomas by 87% compared with GCV alone. Low-dose GCV was ineffective in HSV-tk- tumors. RMP-7 increased [3H] GCV tumoral uptake by 2.6- and 1.7-fold in the tumor center and periphery, respectively. We conclude that RMP-7 could be an important adjunctive treatment for suicide gene therapy of brain tumors, while an RMP-7/GCV combination may also have a significant antitumor effect in untransfected gliomas.  相似文献   

7.
The growth of U-87 or C6 gliomas co-implanted in nude mice with retroviral producer cells (VPC) expressing the herpes simplex virus-thymidine kinase (HSV-tk) gene is only partially impaired by treatment with ganciclovir (GCV). The effect of GCV is even less evident when C6 and VPC are co-implanted into the rat brain. Furthermore, tumors from C6 cells carrying the HSV-tk gene are not eradicated by GCV, although they remain sensitive to GCV when replated in vitro. These limits of the HSV-tk/GCV system in glioma gene therapy may be due to insufficient gene transfer and/or insufficient delivery of GCV to glioma cells. Combination of HSV-tk and one or more cytokines may improve the antitumor efficacy. Among cytokines, interleukin-4 (IL-4) has already been shown to be active against gliomas. In nude mice, GCV treatment inhibited tumor growth more effectively after co-injection of C6 cells with a mixture of VPC transducing IL-4 and HSV-tk genes than after co-injection with either IL-4 or HSV-tk VPC only. In immunocompetent Sprague-Dawley rats, co-injection of IL-4 VPC and C6 cells was also effective in inhibiting the growth of C6 brain tumors, 38% of the animals surviving for at least 2 months. Furthermore, increased and prolonged antitumor efficacy was obtained by transducing both IL-4 and HSV-tk genes.  相似文献   

8.
Metabolic cooperation via gap junctional intercellular communication (GJIC) is an important mechanism of the bystander effect in gene therapy using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) 'prodrug' system. Since retinoids have been reported to increase GJIC by induction of connexin expression, we hypothesized that these compounds could be used to augment the HSVtk/GCV bystander effect. Addition of all-trans retinoic acid increased GJIC in tumor cell lines, augmented expression of connexin 43, and was associated with more efficient GCV-induced in vitro bystander killing in cells transduced with HSVtk via either retrovirus or adenovirus vectors. This augmentation of bystander effect could also be seen in vivo. HSVtk-transduced tumors in mice treated with the combination of GCV and retinoids were significantly smaller than those treated with GCV or retinoids alone. These results provide evidence that retinoids can augment the efficiency of cell killing with the HSVtk/GCV system by enhancing bystander effects and may thus be a promising new approach to improve responses in gene therapy utilizing the HSVtk/GCV system to treat tumors or vascular restenosis.  相似文献   

9.
Malignant mesothelioma is a tumor of the pleura for which there is no satisfactory treatment. It is almost universally fatal, regardless of the stage of the tumor at the time of diagnosis. Current treatment modalities include surgery, chemotherapy, and radiation therapy, although in some series none of these modalities is superior to no treatment at all. Because of the dismal prognosis for patients with malignant mesothelioma, a new mode of treatment is desperately needed. A promising area of research into the treatment of various malignancies is gene therapy. Recent studies have demonstrated the utility of exposing tumor cells to cells transduced to express the Herpes simplex virus gene for thymidine kinase (HSV-tk). By virtue of their expression of HSV-tk, the transduced cells are rendered susceptible to the antiviral drug, ganciclovir (GCV). and nearby tumor cells are killed by a phenomenon termed the bystander effect. In this protocol we propose a Phase I trial to study the safety and determine the maximal tolerated dose of an HSV-tk-transduced ovarian cancer cell line (PA1-STK cells) infused into the pleural cavities of patients with malignant pleural mesothelioma, followed by systemic administration of ganciclovir. The hope is that administration of ganciclovir will result in killing of the HSV-tk transduced ovarian cancer cells as well as the nearby malignant mesothelioma cells. This is a standard dose-escalation protocol.  相似文献   

10.
For the clinical application of the cytokine gene therapy, the antitumor effects of systemic administration of Interferon-gamma (IFN-gamma) and those of in vivo direct IFN-gamma gene transfer to the tumors of mouse bladder carcinoma (MBT2) were compared. After the subcutaneous inoculation of MBT2 cells into mice, 10(2), 10(3) or 10(4) units of IFN-gamma were injected intraperitoneally (i.p.) or subcutaneously (s.c.). Neither i.p. nor s.c. injection of IFN-gamma resulted in tumor suppression or prolonged the survival time of tumor-bearing mice. The effect of in vivo direct IFN-gamma gene transfer by a retrovirus vector to MBT2 tumors was also evaluated. After the subcutaneous inoculation of MBT2 cells into mice, a virus culture supernatant containing IFN-gamma gene was injected into the same tumor site once a day for 3 days. In 50% of the mice in the treatment groups with IFN-gamma gene induction, no tumor formation was observed. Tumor-free survival and actuarial survival in the treatment groups were significantly longer than those in the control group. These results showed the possibility of in vivo direct IFN-gamma gene transfer into tumors and were encouraging for the execution of tumor cell-targeted IFN-gamma gene therapy against human bladder cancer.  相似文献   

11.
Past studies have documented the promise of herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) suicide gene therapy as a potential antitumor treatment. HSV-TK converts the pro-drug ganciclovir (GCV) into a toxic nucleotide analogue, the incorporation of which into cellular DNA blocks cell proliferation. In this report, we have examined the hypothesis that the effectiveness of HSV-TK suicide gene therapy can be enhanced by coexpression of the antitumor cytokine human tumor necrosis factor-alpha (TNF-alpha) from the same replication-defective HSV-1 vector. In vitro testing demonstrated that TNF-alpha expression from this vector potentiated the killing of both TNF-alpha-sensitive L929 tumor cells and TNF-alpha-resistant U-87 MG cells in the presence of GCV. Furthermore, treatment of established intradermal L929 tumors in vivo with the TNF-alpha/TK vector and GCV resulted in prolonged animal survival compared with treatment with parental HSV-TK vector in the presence or absence of GCV. Treatment of intracerebral U-87 MG tumors showed a clear benefit of TK therapy, but a significant further increase in survival using the TNF-alpha vector could not be demonstrated. We found that potentiation of cell killing in vitro required intracellular TNF-alpha because purified protein added to the culture medium of cells infected with HSV-TK vector failed to have the same effect. Accordingly, potentiation in vivo should depend on efficient infection, but immunohistochemical analysis indicated that virus administration by U-87 MG intratumoral injection was inadequate, resulting in an estimated <1% infection of all tumor cells. Moreover, the majority of infected tumor cells were localized at the tumor margin. Together, these results suggest that TNF-enhanced tk gene therapy should provide a useful treatment for TNF-alpha-sensitive tumors and perhaps also for TNT-alpha-resistant tumors if vector delivery can be improved to increase the percentage of transduced tumor cells.  相似文献   

12.
OBJECTIVE: The efficacy and toxicity of adenovirus-mediated transduction of herpes simplex virus thymidine kinase gene started by Rous sarcoma virus (ADV/RSV-tk) followed by administration of ganciclovir (GCV) were studied in vivo. METHODS: An animal model of human epithelial ovarian cancer was established in nude mice using the serous ovarian adenocarcinoma cell lines Ov-ca-2774, then mice were treated by ADV/RSV-Tk and GCV, or GCV and HSV-tk respectively. The average survival time of mice and toxicity were assessed. RESULTS: The mice treated with GCV or HSV tk alone died from 14.4 +/- 1.7 to 19.3 +/- 3.5 days after treatment. The survival time had no difference with control group. The mice treated with ADV/RSV-tk followed by GCV lived at least two times longer than controls and the difference in both groups was significant. The earlier the treatment began, the longer the average survival time was. Treatment efficacy was dependent on dose of ADV/RSV-tk and tumor burden of mice. CONCLUSION: ADV/RSV-tk gene therapy is a safe and efficient approach to ovarian cancer treatment in the experiment.  相似文献   

13.
Assessment of suicide enzyme activity would have considerable impact on the planning and the individualization of suicide gene therapy of malignant tumors. This may be done by determining the pharmacokinetics of specific substrates. We generated ganciclovir (GCV)-sensitive human mammary carcinoma cell lines after transfection with a retroviral vector bearing the herpes simplex virus thymidine kinase (HSV-tk) gene. Thereafter, uptake measurements and HPLC analyses were performed up to 48 h in an HSV-tk-expressing cell line and in a wild-type cell line using tritiated GCV. HSV-tk-expressing cells showed higher GCV uptake and phosphorylation than control cells, whereas in wild-type MCF7 cells no phosphorylated GCV was detected. In bystander experiments the total GCV uptake was related to the amount of HSV-tk-expressing cells. Furthermore, the uptake of GCV correlated closely with the growth inhibition (r = 0.92). Therefore, the accumulation of specific substrates may serve as an indicator of the HSV-tk activity and of therapy outcome. Inhibition and competition experiments demonstrated slow transport of GCV by the nucleoside carriers. The slow uptake and low affinity to HSV-tk indicate that GCV is not an ideal substrate for the nucleoside transport systems or for HSV-tk. This may be the limiting factor for therapy success, necessitating the search for better substrates of HSV-tk.  相似文献   

14.
This study explored the use of interleukin 2 (IL-2) and interferon gamma (IFN-gamma) gene-modified tumor cells as cellular vaccines for the treatment of bladder cancer. The mouse MBT-2 tumor used is an excellent model for human bladder cancer. This carcinogen-induced tumor of bladder origin resembles human bladder cancer in its etiology and histology, and responds to treatment in a manner similar to its human counterpart. Using retroviral vectors, the human IL-2 and mouse IFN-gamma genes were introduced and expressed in MBT-2 cells. The tumor-forming capacity of the cytokine gene-modified MBT-2 cells was significantly impaired, since no tumors formed in mice injected intradermally with either IL-2- or IFN-gamma-secreting cells, using cell doses far exceeding the minimal tumorigenic dose of parental MBT-2 cells. Furthermore, mice that rejected the IL-2- or IFN-gamma-secreting tumor cells became highly resistant to a subsequent challenge with parental MBT-2 cells, but not to 38C13 cells, a B cell lymphoma of the same genetic background. To approximate the conditions as closely as possible to the conditions prevailing in the cancer patient, inactivated cytokine-secreting cells were used to treat animals bearing tumors established by orthotopic implantation of MBT-2 cells into the bladder wall of the animal. Treatment of mice carrying a significant tumor burden with IL-2-secreting MBT-2 cells had a significant inhibitory effect on tumor progression with extended survival. Moreover, in 60% of the mice the tumor regressed completely and the animals remained alive and free of detectable tumor for the duration of the observation period. Treatment of tumor-bearing animals with IL-2-secreting MBT-2 cells was superior to the use of cisplatin, a chemotherapeutic agent used in the treatment of bladder cancer. The therapeutic effect of IFN-gamma-secreting cells was minimal and treatment with unmodified MBT-2 cells had no effect on tumor growth or survival, showing that the parental MBT-2 cells were nonimmunogenic in this experimental setting. Most importantly, mice that exhibited complete tumor regression after treatment with IL-2-secreting MBT-2 cells became resistant to a subsequent challenge with a highly tumorigenic dose of parental MBT-2 cells, indicating that long-term immunological memory was established in the "cured" mice.  相似文献   

15.
The goal of this work was to identify potential host immune responses to thymidine kinase (TK) suicide gene-modified tumors undergoing chemoablation induced by the prodrug ganciclovir (GCV). The aims were to measure the efficacy and specificity of immunity induced against unmodified tumor, to identify qualitative or quantitative changes in the host response to TK+ tumors undergoing chemoablation that may contribute to the induction of antitumor immunity, and to compare critically the induction of immunity by chemoablation of TK-modified tumors with that of other methods of immunization in this tumor model and in response to other well-defined model antigens. Animals treated with TK+ tumors and GCV developed specific resistance to rechallenge with unmodified tumor. GCV induced significant tumor necrosis, which was associated with a pronounced host cell infiltrate composed of polymorphonuclear cells, both CD4+ and CD8+ T lymphocytes, and increased intratumoral IL-12. Cyclophosphamide-treated mice exhibited no such host response despite the induction of tumor necrosis. CTL responses to defined antigens in TK+ cells were greater in animals treated with prodrug than were those in animals not treated with prodrug but harboring live TK+ cells. Similar degrees of immunity were produced by immunization with irradiated cells.  相似文献   

16.
Recent studies have shown that the brain is not a barrier to successful active immunotherapy that uses gene-modified autologous tumor cell vaccines. In this study, we compared the efficacy of two types of vaccines for the treatment of tumors within the central nervous system (CNS): dendritic cell (DC)-based vaccines pulsed with either tumor extract or tumor RNA, and cytokine gene-modified tumor vaccines. Using the B16/F10 murine melanoma (B16) as a model for CNS tumor, we show that vaccination with bone marrow-generated DCs, pulsed with either B16 cell extract or B16 total RNA, can induce specific cytotoxic T lymphocytes against B16 tumor cells. Both types of DC vaccines were able to protect animals from tumors located in the CNS. DC-based vaccines also led to prolonged survival in mice with tumors placed before the initiation of vaccine therapy. The DC-based vaccines were at least as effective, if not more so, as vaccines containing B16 tumor cells in which the granulocytic macrophage colony-stimulating factor gene had been modified. These data support the use of DC-based vaccines for the treatment of patients with CNS tumors.  相似文献   

17.
Antitumor gene therapy using herpes simplex type 1 thymidine kinase (TKh) and ganciclovir (GCV) treatment has revealed an important intratumoral bystander effect. A whole tumor can be eliminated when only a fraction of its tumor cells express TKh. We now report that the bystander effect not only acts within a tumor, but also between distant tumors. One TKh+ tumor was generated simultaneously with one or multiple TKh- tumors in different rat liver lobes such that there was no contact between the resulting tumors. Both the TKh+ and the TKh- tumors regressed after GCV treatment and showed infiltration with macrophages and T lymphocytes. This distant bystander effect, which is likely immune mediated, should be of major importance for gene therapy of disseminated tumors.  相似文献   

18.
The effects of two anti-murine cytomegalovirus (MCMV) immunotoxins used in combination with ganciclovir (GCV) or cidofovir (HPMPC) against MCMV were determined in vitro and in mice. The inhibitors were added to cell cultures 24 or 48 h after MCMV adsorption so as to not affect the initial infection rate. The immunotoxins (0.63, 1.25 and 2.5 micrograms/ml) combined with GCV (1.25, 2.5 and 5 microM) or HPMPC (0.03, 0.06 and 0.12 microM) caused synergistic inhibition of virus yield in C127I cells at most of the combinations tested. No toxic effect on cell growth in culture was observed at these immunotoxin/drug combinations. The effects of immunotoxin and GCV treatment were studied further in MCMV-infected severe combined immunodeficient (SCID) mice. Immunotoxin (1 mg/kg per day) given by intraperitoneal (i.p.) injection on days 1, 4 and 7 of the infection did not extend the mean day to death compared with the placebo group. Once daily i.p. treatment with GCV (50 mg/kg per day) for days starting at 24 h after virus inoculation extended survival time almost 11 days. The combination of immunotoxin plus GCV was better than GCV alone, extending the mean day to death an additional 2 to 3 days, which is suggestive of a synergistic effect.  相似文献   

19.
Metastases of lung cancer are a major cause of treatment failure. To evaluate the therapeutic efficacy of gene therapy in metastatic lung cancer, we used adenoviral (ADV) mediated transfer of the herpes simplex virus thymidine kinase (HSV-tk) gene and the cytokine gene interleukin-2 (IL-2) to treat a murine model of metastatic lung cancer in the liver. Hepatic metastases were established by intrahepatic implantation of LL2 cells in syngeneic recipient mice. One week after tumor implantation, various replication defective ADV vectors were injected intratumorally. Treatment with a vector expressing the HSV-tk followed by ganciclovir administration with ADV.tk resulted in significant regression of tumor (p<0.01) as well as prolongation of survival (p<0.001). While a vector expressing mouse IL-2 ADV.IL-2 alone was ineffective, combination therapy with HSV-tk resulted in further tumor regression and improvement of animal survival (p<0.05). These results demonstrate that suicide and cytokine genes can be utilized in combination to treat metastatic lung cancer in vivo.  相似文献   

20.
Lung cancer, the leading cause of cancer death in the United States, is resistant to most currently available therapies. To evaluate a multicomponent gene therapy approach that replaces tumor-bearing host immune deficits, we genetically modified Line 1 (L1C2), a weakly immunogenic alveolar cell carcinoma cell line. L1C2 was transduced ex vivo with a retroviral construct that contained two components: a cytokine gene (granulocyte-macrophage colony-stimulating factor) and a drug sensitivity gene (herpes simplex virus thymidine kinase). The third component of this therapy, in vitro-activated syngeneic bone marrow-derived dendritic cells, was included to augment antigen presentation. The addition of ganciclovir (GCV) caused the lysis of transduced tumor cells, resulting in the release of potential tumor antigens. Ex vivo-transduced tumor cells regressed in vivo following GCV therapy but were not effective in the treatment of established parental tumors. To treat established tumors, dendritic cells were administered in combination with transduced tumor cells and GCV. A total of 50% of these mice rejected the 5-day-old established tumors and were immune to rechallenge with parental L1C2 cells. Thus, this multicomponent gene therapy system leads to both the regression of established tumors and enhanced immunogenicity in this weakly immunogenic murine lung cancer model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号