首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dielectric properties of the Ba (Co1/3 Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 system were determined. Ba (Co1/3 Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 has a complex perovskite structure, a high dielectric constant, a low dielectric loss, and a low temperature coefficient of the resonant frequency. A solid-solution ceramic with 0.7Ba (Co1/3 Nb2/3)O3·0.3 Ba(Zn1/3Nb2/3)O3 has a dielectric constant of K=33.5, Q=11000 at 6.5 GHz, and a temperature coefficient of the resonant frequency of τf=0 ppm/°C. The temperature coefficient of resonant frequency can be varied by changing the composition. The Q values of the ceramics can be increased by annealing in a nitrogen atmosphere. These ceramics can be used for resonant elements and stabilized oscillators.  相似文献   

2.
Dielectric properties of the system (1 − x)(La1/2Na1/2)TiO3 x Ca(Fe1/2Nb1/2)O3, where 0.4 # x # 0.6, have been investigated at microwave frequencies. The temperature coefficient of resonant frequency (τf), nearly 0 ppm/°C, was realized at x = 0.58. These ceramics had perovskite structure and showed relatively low dielectric losses. A new dielectric material applicable to microwave devices having Q · f of 12000–14000 GHz and a dielectric constant (εr) of 59–60 has been obtained at 1300–1350°C for 5–15 h sintering.  相似文献   

3.
Ceramics with the chemical compositions of Pb1− x La2 x /3(Nb0.95Ti0.0625)2O6 (0≤ x ≤0.060) (PLTN) were prepared by the conventional solid-state reaction method. X-ray diffraction analysis indicated that Ti and La doping not only decreased the rhombohedral–tetragonal phase transformation temperature, but also stabilized the orthorhombic phase of PLTN ceramics. All ceramics sintered at 1190°–1250°C had shown the pure orthorhombic ferroelectric phase. La doping suppresses grain growth and inhibits the formation of pores and cracks, resulting in an increase in relative density up to 97%. The amount of La doping to PLTN ceramics obviously affect ceramics' piezoelectric constant ( d 33) and dielectric loss (tanδ). The sample with x =0.015 possesses high Curie temperature ( T c=560°C), low dielectric loss (tanδ=0.0054), and excellent piezoelectric constant ( d 33=92 pC/N), presenting a high potential to be used in high-temperature applications as piezoelectric transducers.  相似文献   

4.
We report the microwave dielectric properties and the microstructures of Nd(Co1/2Ti1/2)O3 ceramics prepared by the conventional solid-state route. The prepared Nd(Co1/2Ti1/2)O3 exhibits a mixture of Co and Ti showing a 1:1 order in the B site. Lowering the sintering temperature (as low as 1260°C) and promoting the densification of Nd(Co1/2Ti1/2)O3 ceramics could be effectively achieved by adding CuO (up to 0.75 wt%). At 1350°C, Nd(Co1/2Ti1/2)O3 ceramics with 0.5 wt% CuO addition possess a dielectric constant (ɛr) of 27.6, a Q × f value of 165 000 GHz (at 9 GHz), and a temperature coefficient of resonant frequency (τf) of −20 ppm/°C. By comparing with pure Nd(Co1/2Ti1/2)O3 ceramics, incorporating additional CuO helps to render a dielectric material with a higher dielectric constant, a smaller τf value, and a 20% dielectric loss reduction, which makes it a very promising candidate for applications requiring low microwave dielectric loss.  相似文献   

5.
A solution sol-gel method has been developed to prepare 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (0.9PMN-0.1PT) ceramics. During the processing the gel first converted to cubic pyrochlore phase at a calcination temperature of 600°C followed by the formation of pure perovskite phase at 775°C. The ceramics sintered at 1250°C for 4 h showed ≈98% of the theoretical density. The room-temperature dielectric constant of the pellets sintered at 1250°C showed a maximum value of 25035 at 1 kHz. Sintering studies at different temperatures revealed that the dielectric constant increased with increasing grain size in these ceramics.  相似文献   

6.
The microwave characteristics of two dielectric resonator materials were investigated. This research included (Zr, Sn)TiO4, a material having the characteristics of a dielectric constant K = 38, Q = 7000 at 7 GHz, and temperature coefficient of resonant frequency τ f, = 0 ppm/°C. The investigation determined the relations between the dielectric loss and micro-structures of this ceramic. Analysis by X-ray microanalyzer made it clear that the addition of Fe2O3 increased the dielectric loss of this ceramic because the Fe ions diffused into the grain. The other material investigated was BaO-PbO-Nd2O3-TiO2, a ceramic having a dielectric constant of K = 88, Q = 5000 at 1 GHz, and τ f= 0 ppm/°C. As this ceramic has a very high dielectric constant, it is useful for applications at frequencies <1 GHz.  相似文献   

7.
BaCu(B2O5) ceramics were synthesized and their microwave dielectric properties were investigated. BaCu(B2O5) phase was formed at 700°C and melted above 850°C. The BaCu(B2O5) ceramic sintered at 810°C had a dielectric constant (ɛr) of 7.4, a quality factor ( Q × f ) of 50 000 GHz and a temperature coefficient of resonance frequency (τf) of −32 ppm/°C. As the BaCu(B2O5) ceramic had a low melting temperature and good microwave dielectric properties, it can be used as a low-temperature sintering aid for microwave dielectric materials for low temperature co-fired ceramic application. When BaCu(B2O5) was added to the Ba(Zn1/3Nb2/3)O3 (BZN) ceramic, BZN ceramics were well sintered even at 850°C. BaCu(B2O5) existed as a liquid phase during the sintering and assisted the densification of the BZN ceramic. Good microwave dielectric properties of Q × f =16 000 GHz, ɛr=35, and τf=22.1 ppm/°C were obtained for the BZN+6.0 mol% BaCu(B2O5) ceramic sintered at 875°C for 2 h.  相似文献   

8.
Bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) with 0–6 at.% lanthanum was prepared by the conventional mixed oxide method. Each composition was calcined at 800–900°C for 2–5 h to form a pure perovskite phase. Green pellets were sintered at 1050–1150°C for 1–4 h to obtain dense ceramics with at least 95% of theoretical density. X–ray diffraction (XRD) showed phase distortion as lanthanum was added to this system. Meanwhile, a small amount of La was found to affect the grain size and had an influence on the poling conditions and electrical properties. The BNT–based composition with 1 at.% La doping provided a dielectric constant ( K ) of 560, a piezoelectric charge constant ( d 33) of 92 pC/N, and a hydrostatic piezoelectric coefficient ( d h) of 72 pC/N.  相似文献   

9.
The effect of ZrO2 on crystallographic order, microstructure, and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 (BZT) ceramics was investigated. A small amount of ZrO2 disturbed the 1:2 cation ordering. The average grain size of the BZT significantly increased with the addition of ZrO2, which was attributed to liquid-phase formation. The relative density increased with the addition of a small amount of ZrO2, but it decreased when the ZrO2 content was increased. Variation of the dielectric constant with ZrO2 addition ranged between 27 and 30, and the temperature coefficient of resonant frequency increased abruptly as the ZrO2 amount exceeded 2.0 mol%. The Q value of the BZT significantly improved with the addition of ZrO2, which could be explained by the increased relative density and grain size. The maximum Q × f value achieved in this investigation was ∼164 000 GHz for the BZT with 2.0 mol% ZrO2 sintered at 1550°C for 10 h.  相似文献   

10.
Effects of additives on the piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 ceramics in a perovskite-type structure are described. The tetragonality of Pb(Mg1/3Nb2/3)0.375-Ti0.375Zr0.25O3 ceramics increased with the addition of NiO, Cr2O3, or Fe2O3 but decreased with the addition of MnO2 or CoO. The dielectric and piezoelectric properties of the base composition were improved markedly through selection of additives in proper amounts. Addition of NiO yielded a high dielectric constant and planar coupling coefficient for compositions at the morphotropic transition boundary. High mechanical Q -factors and low electrical dissipation factors were obtained by addition of MnO2. Addition of both NiO and MnO2 produced a mechanical Q -factor of 2051 and a planar coupling coefficient of 0.553. The resonant frequency of Pb(Mg1/2Nb2/3)0.4375Ti0.4375 zr0.125O3 containing MnO2 had very low temperature and time dependence. The microstructure indicated that ceramics with a high mechanical Q -factor had a fine, uniform grain structure. Addition of Cr2O3 retarded grain growth and addition of MnO2, NiO, CoO, or Fe2O3 promoted grain growth in the ternary system.  相似文献   

11.
Pb(Zn1/3Nb2/3)O3-based ceramics have been prepared by two different processing methods: conventional (PZN-C) and reaction-sintering (PZN-RS). The conventionally prepared PZN-based ceramics densified at lower temperatures (950°C) than the reaction-sintered samples (1100°C), but the perovskite/pyrochlore ratio was always higher in PZN-RS. The presence of a substantial amount of pyrochlore phase in PZN-C ceramics caused a decrease in the electrical properties. The maximum dielectric constant values in PZN-C ceramics were 10%–15% lower than those of PZN-RS, despite a similar average grain size, 7 ± 0.2 μm. The temperature of the maximum of the dielectric constant ( T max) was lower than that expected from the mixing rule because of the possible formation of Ba–Nb clusters. The higher chemical homogeneity in PZN-RS ceramics is the main reason for the higher dielectric constant, T max and electromechanical response, as well as for the lower difference between T max and the depolarization temperature ( T d) and the lower diffusiveness parameter (δ).  相似文献   

12.
(Ni1− x Zn x )Nb2O6, 0≤ x ≤1.0, ceramics with >97% density were prepared by a conventional solid-state reaction, followed by sintering at 1200°–1300°C (depending on the value of x ). The XRD patterns of the sintered samples (0≤ x ≤1.0) revealed single-phase formation with a columbite ( Pbcn ) structure. The unit cell volume slightly increased with increasing Zn content ( x ). All the compositions showed high electrical resistivity (ρdc=1.6±0.3 × 1011Ω·cm). The microwave (4–5 GHz) dielectric properties of (Ni1− x Zn x )Nb2O6 ceramics exhibited a significant dependence on the Zn content and to some extent on the morphology of the grains. As x was increased from 0 to 1, the average grain size monotonically increased from 7.6 to 21.2 μm and the microwave dielectric constant (ɛ'r) increased from 23.6 to 26.1, while the quality factors ( Q u× f ) increased from 18 900 to 103 730 GHz and the temperature coefficient of resonant frequency (τf) increased from −62 to −73 ppm/°C. In the present work, we report the highest observed values of Q u× f =103 730 GHz, and ɛ'r=26.1 for the ZnNb2O6-sintered ceramics.  相似文献   

13.
Sodium bismuth titanates Na1/2Bi1/2TiO3 (NBT) doped with 0–3 wt% Er2O3 were prepared by the conventional solid-state reaction method. The X-ray diffraction results revealed that the sintered Er-doped NBT ceramics exhibited a pure perovskite structure with Er3+ concentrations ranging from 0 to 1 wt%. At a low Er2O3 concentration, the Er-doped NBT ceramics showed enhanced electrical properties with dielectric constant ɛ33T0=636, a low dielectric dissipation factor (tan δ=3.3%), a low coercive field ( E c=4.56 kV/mm), and a high piezoelectric constant ( d 33=75 pC/N). The relationship between the composition and properties of Er-doped NBT ceramics has been discussed.  相似文献   

14.
High-dielectric-constant and low-loss ceramics in the (1− x )Nd(Zn1/2Ti1/2)O3– x SrTiO3 system have been prepared by the conventional mixed-oxide route and their microwave dielectric properties have been investigated. A two-phase system was confirmed by the X-ray diffraction patterns, the energy-dispersive X-ray spectrometer analysis, and the measured lattice parameters. Addition of SrTiO3, having a much smaller grain size in comparison with that of Nd(Zn1/2Ti1/2)O3, could effectively hold back abnormal grain growth in the Nd(Zn1/2Ti1/2)O3 matrix. Evaporation of Zn at high temperatures caused an increase in the dielectric loss of the system. The temperature coefficient of resonant frequency increases with increasing SrTiO3 content and tunes through zero at x =0.52. Specimens with x =0.52 possessed an excellent combination of microwave dielectric properties: ɛr∼54.2, Q × f ∼84 000 GHz, and τf∼0 ppm/°C. It is proposed as a suitable candidate material for today's 3G passive components and small-sized GPS patch antennas.  相似文献   

15.
X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, and an impedance analyzer were used to examine the Nb–Co codoping effects on the densification, crystalline phase, microstructure development, and dielectric–temperature characteristics of BaTiO3–(Bi0.5Na0.5)TiO3 ceramics. The results indicate that the Curie temperature shifted to a higher temperature (above 140°C) by adding BNT. The dielectric constant–temperature (ɛ– T ) curve broadened at the Curie temperature due to the small grain size (0.3–0.4 μm). A core-shell structure was developed, which is helpful to flatten the ɛ– T curve of BaTiO3 ceramics at high temperatures.  相似文献   

16.
Single-phase perovskite 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (0.9PMN–0.1 PT) from a stoichiometric mixture of starting materials was synthesized by applying a mechanochemical technique to the stage of a precursor. A stoichiometric mixture of PbO, TiO2, Mg(OH)2, and Nb2O5 was milled for 60 min and heated at temperatures as low as 850°C for 4 h to obtain a single phase. The maximum dielectric constant of the samples from the milled mixture increased as the sintering temperature increased, with the remarkable grain growth, and attained 24600 at 1200°C. In contrast, poor densification and coexistence of the pyrochlore phase were observed on the samples from the nonmilled mixture. Further observation suggested that the pyrochlore phase concentrated near the surface during sintering and then migrated into the PbZrO3 packing powder, leading to a pyrochlore–free phase at 1250°C. The dielectric constant of the latter ceramics was explained by the series mixing rule for the dielectric constant of a diphasic solid.  相似文献   

17.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

18.
Effects of excess Bi2O3 content on formation of (Bi3.15Nd0.85)Ti3O12 (BNT) films deposited by RF sputtering were investigated. The microstructures and electrical properties of BNT thin films are strongly dependent on the excess Bi2O3 content and post-sputtering annealing temperature, as examined by XRD, SEM, and P – E hysteresis loops. A small amount of excess bismuth improves the crystallinity and therefore polarization of BNT films, while too much excess bismuth leads to a reduction in polarization and an increase in coercive field. P – E loops of well-established squareness were observed for the BNT films derived from a moderate amount of Bi2O3 excess (5 mol%), where a remanent polarization 2P r of 25.2 μC/cm2 and 2E c of 161.5 kV/cm were shown. A similar change in dielectric constant with increasing excess Bi2O3 content was also observed, with the highest dielectric constant of 304.1 being measured for the BNT film derived from 5 mol% excess Bi2O3.  相似文献   

19.
Dense (1− x )Ca(Mg1/3Ta2/3)O3/ x CaTiO3 ceramics (0.1≤ x ≤0.9) were prepared by a solid-state reaction process. The crystal structures and microstructures were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Single-phase solid solutions were obtained in the entire composition range. Long-range 1:2 ordering of B-site cations and oxygen octahedra tilting lead to the monoclinic symmetry with space group P 21/ c for x =0.1. For x above 0.1, the long-range ordering was destroyed and the crystal structure became the orthorhombic with space group Pbnm . The microwave dielectric properties showed a strong dependence on the composition and microstructure. The dielectric constant and temperature coefficient of resonant frequency increased nonlinearly as the CaTiO3 content increased while the Qf values decreased approximately linearly. Good combination of microwave dielectric properties was obtained at x =0.45, where ɛr=45.1, Qf =34 800 GHz, and τf=17.4 ppm/°C.  相似文献   

20.
Monoclinic pyrochlore ceramic Bi2Zn2/3− x /3Nb4/3−2 x /3Ti x O7 (M–BZN) with x =0–0.4 is synthesized and the structure and microwave cryogenic properties are scrutinized. The dielectric constant (ɛ') and loss tangent (tanδ) of these ceramics are measured at a frequency of 3 GHz and temperature range of 15–300 K. With an increase in x value from 0 to 0.4, the dielectric constant and dielectric loss tangent of the investigated materials increase from 70 to 114 and 0.009 to 0.061, respectively. The Ti-substituted ceramics show an increase in dielectric constant with temperature, and the loss tangent shows a peak around 200 K. The peak in the dielectric loss tangent becomes more prominent with an increase of Ti content. The temperature where the dielectric loss tangent peak appears is found to be decreasing slightly with an increase of titanium doping. The observed dielectric characteristics of the titanium-doped M–BZN ceramics are attributed to the presence of the relaxation in these materials, originating from the disorder caused by the Ti4+ substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号