首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An environmental friendly regenerated cellulose membrane (RCM) was successfully prepared via NaOH/urea aqueous solution system by utilizing recycled newspaper (RNP) as the cellulose source. The morphological and chemical structure of resulting membrane were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD) spectroscopy, and thermogravimetric analysis (TGA). Results from FTIR and XRD verified that the transparent RCM possesses cellulose II structure. SEM observation revealed that the transparent RCM consist of homogeneous dense symmetric membrane structure and composed of a skin layer with mean roughness parameter Ra, obtained from AFM analysis of 29.53 nm. Pure water flux, water content, water contact angle, porosity, and pore size of the resulting membrane were also measured. This study promotes the potential of the cellulose‐based membrane obtained from low cost cellulose source for application in filtration and separation system. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42684.  相似文献   

2.
This paper reports the development of a new process for the synthesis and sintering of forsterite nanopowder via microwave-assisted high energy ball milling of a powder mixture containing silica gel and Mg(OH)2. X-ray diffraction (XRD), FTIR spectrometer, BET, scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) techniques were utilized to characterize the as-milled and annealed samples. X-ray diffraction results showed that highly ordered forsterite can be obtained through the calcination of the as-milled powder over 900 °C. In addition, SEM and TEM observations of the synthesized powders showed that the particle size of the powder lies in the nanometer range, also being compared with the BET results (about 45 to 64.5 nm). Microwave sintering (MS) of the forsterite nanopowder produced with high energy ball milling and subsequent microwave heating resulted in remarkable enhancement in densification in comparison with conventional sintering (CS) at lower temperatures.  相似文献   

3.
Sulfur-doped TiO2 catalysts were prepared by a mechanochemical method. The prepared catalysts exhibited photocatalytic activity in methylene blue degradation under visible light. The catalyst structure has been characterized using UV–visible spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetry analysis (TGA) as well as Fourier transform infrared spectroscopy (FT-IR). UV–visible spectroscopy revealed that the absorption edge of the doped TiO2 was red-shifted compared with bare TiO2. XRD patterns suggested that the brookite phase became more prevalent with increasing ball milling duration. In addition, surface sulfate species were detected by FT-IR, XPS and TGA. We deduce the rise of catalytic activity is due to the synergetic effect between the brookite phase and the anatase phase that would probably retard the electron–hole recombination. On the other hand, methylene blue was found to be N-demethylated during the irradiation thus giving rise to blue-shifting of peak at 664 nm in UV–visible spectroscopy.  相似文献   

4.
A series of polystyrene (PS)/organomontmorillonite (OMMT) clay nanocomposites was prepared by effectively dispersing the inorganic nanolayers of OMMT clay in the organic PS matrix via the solvent blending method using xylene as a solvent. The resulting samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The XRD and TEM results show that the intercalation/exfoliation of OMMT can be divided into solvent swelling and layer breaking processes and is affected by several reaction parameters such as nanofiller loading, refluxing temperature, and refluxing time. TGA data show that the PS/OMMT nanocomposites have significant enhanced thermal stability. When 50% weight loss is selected as a point of comparison, the thermal decomposition temperature of PS/OMMT nanocomposite with 7 wt% of OMMT is 15°C higher than that of pure PS. The glass transition temperature (Tg) of PS/OMMT nanocomposites is about 5.0–6.2°C higher than that of pure PS. The water uptake capacity of PS/OMMT nanocomposites is negligible when compared with pure PS.  相似文献   

5.
Porous nylon‐6 fibers were obtained by electrospinning of ultra‐high molecular polyamide 6 (UHMW‐PA6). First, UHMW‐PA6/calcium formate composite nanofibers were prepared as precursors by electrospinning UHMW‐PA6 solutions containing different contents of calcium formate particles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the surface morphology and inner structure of composite nanofibers. It was found that calcium formate particles were distributed both inside and on the surface of nanofibers. Fourier transform infrared (FTIR), differential scanning calorimetry, and thermal gravimetric analysis (TGA) were used to study the structure and properties of these nanofibers. Then, porous UHMW‐PA6 nanofibers were obtained by soaking the electrospun web in water for 24 h, to remove calcium formate particles. The removal of calcium formate particles was confirmed using FTIR and TGA tests. SEM and TEM observations revealed the formation of porous structure in these nanofibers. In addition, CaCl2 was used instead of calcium formate to prepare the UHMW‐PA6 nanoporous fiber. POLYM. ENG. SCI., 55:1133–1141, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
A series of poly(vinyl alcohol) (PVA)/regenerated silk fibroin (RSF)/nano-silicon dioxide (nano-SiO2) blend films were prepared by solution casting method, in which nano-SiO2 was obtained via sol?Cgel process. The structure, properties, and morphology of the films related to the compatibility were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). XRD peaks of PVA/RSF/nano-SiO2 (1.0?wt?%) blends decreased in intensity indicated that formation of PVA and RSF crystal lattices was hindered by nano-SiO2 particles. FTIR spectroscopy analysis of PVA/RSF/nano-SiO2 films confirmed that both Si?CO?CC linkage and hydrogen bonding were formed among PVA, RSF, and nano-SiO2. SEM showed that there was no obvious phase separation in PVA/RSF/nano-SiO2 (1.0?wt?%) film although small uniform blur particles can still be found. In addition, TEM showed nano-particles were well dispersed through the PVA/RSF polymer matrix. Besides, the observed shift in glass transition temperatures (T g) and improvement in thermal properties of composite films suggested the enhanced compatibility due to interfacial bonding and intermolecular interactions. Therefore, these results indicated that the compatibility of PVA/RSF was improved effectively by the addition of nano-SiO2.  相似文献   

7.
Herein, a conductive polymer material containing rare earth oxide (PEG–LiX–CeO2) was designed and synthesized. The bonding performance of the conductive polymer was analyzed via AC impedance, X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electron microscopy (SEM), tensile strength, ball milling and anodic bonding experiments. The AC impedance, XRD and FTIR experiments demonstrate that the introduction of alkali metal lithium salt and cerium oxide (CeO2) can effectively reduce the crystallinity of the composites and increase the ion migration. The results of ball milling show that increasing the milling time (<?10 h) and speed (<?250 r min?1) can improve the conductivity of the composites. The anodic bonding experiment of PEG–LiClO4–CeO2 with AL foil and the SEM characterization of the bonding interface demonstrate the existence of a well-defined bonding layer between the bonding interface.  相似文献   

8.
Polyvinyl acetate (PVAc)/titanium dioxide (TiO2) hybrid nanofibers were fabricated by combining sol–gel process with electrospinning technology, which consisted of PVAc as organic segment and TiO2 as inorganic part. The surface structures of the PVAc/TiO2 hybrid nanofibrous mats were examined using scanning electron microscopy (SEM). The surface morphology and bulk structures of single nanofiber were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FTIR) was employed to analyze the chemical structures of the PVAc/TiO2 hybrid nanofibers. SEM scanning revealed that the fibrous structure was formed. AFM observations presented a significant difference in the morphology of the nanofibers before and after hybridization. It was observed from TEM images that some black streaks with various lengths distributed in a nanofiber. The FTIR analysis indicated the newly formed associated hydrogen bond because of the hybrid effect between PVAc and TiO2 sol. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
The aim of this study was to investigate the utilization of milkweed fruit floss residues as a source for the isolation of cellulose. Cellulose was extracted by acidified sodium chlorite and sodium hydroxide treatments. Characterization of the pristine milkweed floss and extracted cellulose was performed by chemical composition analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The extracted cellulose had mainly α-cellulose as the other components hemicellulose and lignin were significantly removed during cellulose extraction process. The FTIR spectra also indicated that the chemical treatments extensively removed hemicellulose and lignin from the pristine milkweed floss. SEM technique was used to investigate the surface morphology of the pristine milkweed floss and extracted cellulose. The intensity of the crystalline peak in the X-ray diffractograms of the extracted cellulose was higher than that of pristine milkweed. Further, the XRD results indicated a structural transformation of cellulose I (pristine milkweed) to cellulose II (extracted cellulose) because of the chemical treatments. The extracted cellulose, which is a high biomass, had better thermal stability than the pristine milkweed floss owing to removal of non-cellulosic components.  相似文献   

10.
We describe the preparation and characterization of gelatin‐containing nylon‐6 electrospun fibers and their potential use as a bioactive scaffold for tissue engineering. The physicochemical properties of gelatin/nylon‐6 composite nanofibers were analyzed using field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, TGA and contact angle and tensile measurements. FE‐SEM and TEM images revealed that the nanofibers were well oriented and showed a good incorporation of gelatin. FTIR spectroscopy and TGA also revealed that there was good interaction between the two polymers at the molecular level. The adhesion, viability and proliferation properties of osteoblast cells on the gelatin/nylon‐6 composite nanofibers were analyzed by an in vitro cell compatibility test. Our results suggest that the incorporation of gelatin can increase the cell compatibility of nylon‐6 and therefore the composite mat obtained has great potential in hard tissue engineering. © 2012 Society of Chemical Industry  相似文献   

11.
In this study a novel synthetic method for the large-scale production of spherical, high surface area and ultra-fine alumina (Al2O3) powder has been described. Synthetic Bayer liquor was extracted by alkali fusion of raw bauxite with sodium hydoxide. Alumina nanopowders were synthesised through a ball mill-aided precipitation method using the synthetic Bayer liquor and mineral acid precipitants. The powders produced were characterised by X-ray diffraction (XRD), particle size distribution (PSD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller surface area and pore size analysis, energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In this article, the effects of precipitants such as H2SO4, HCl and HNO3 on crystallite and particle size, surface area, pore volume, and pore size and shape are reported. The experimental results prove that precipitation leads to an aggregated particle that is disaggregated by the ball-milling method. The ball milling process strongly influences the formation of uniform-sized spherical particles with a high surface area. It was revealed that nitric acid is an effective precipitant for controlling particle size and textural properties of Al2O3 powder. A nanopowder of γ-Al2O3 with an average crystallite size of 3 nm and an average particle size of 58 nm with a specific surface area (SSA) of 190 m2 g− 1 is produced. This article elucidates a new method with a simple reaction scheme for the mass production of Al2O3 nanoparticles from raw bauxite for various commercial applications.  相似文献   

12.
This paper describes PVB/silica nanofibers which were fabricated by electrospinning. Although electrospinning has developed rapidly over the past few years, electrospinning nanofibers are still at a premature research stage which is a process by which polymer nanofibers can be formed when a droplet of viscoelastic polymer solution is subjected to high voltage electrostatic field. PVB/silica nanofibers were obtained when the PVB/silica precursor ratio was 15% and the average diameters ranged from 100 to 200 nm and increased with increasing solution concentration and electrospinning synthesized at 12 kV of the applied voltage. The morphologies and structures of PVB/silica nanofibers were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analyzer (TGA), Fourier transform infrared spectrometer (FTIR), energy dispersive spectrometer (EDS).  相似文献   

13.
《Ceramics International》2022,48(12):17171-17177
Graphene nanosheets (GNSs)/Al2O3 composites were synthesized by wet milling. In this study, the effects of wet milling speed on the layer distribution, quality and conversion efficiency of graphene in GNSs/Al2O3 composites were studied using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), raman spectroscopy, fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results show that the intensity of graphite peak decreases and the conversion efficiency of graphene increases with the increase of rotational speed in the range of 200–300 rpm, and a small amount of graphene coated Al2O3 nanoparticles were found in GNSs/Al2O3 composites. The number of layers (≤10 layers) of GNSs gradually increases with the increase of ball milling speed. When the rotational speed is 300 rpm, the graphene conversion efficiency is the highest. At different rotational speeds, graphene defects were the least influential marginal defects. There was no characteristic peak of graphene oxide (GO) appeared in the composite, indicating a small oxidation degree of graphene.  相似文献   

14.
In the present study, new functional poly(amide‐imide)/organoclay nanocomposite films were successfully fabricated through the solution intercalation technique. New poly(amide‐imide) (PAI) containing glycine was synthesized via solution polycondensation of 1,1',3,3'‐tetraoxo(5,5'‐biisoindoline‐2,2'‐diyl)diacetic acid with 4,4′‐diaminodiphenylsulfone. The synthesized PAI was characterized by 1H NMR, Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography, elemental analysis and inherent viscosity. Then, PAI/organoclay nanocomposite films containing 4 and 8 wt% of organoclay were prepared via solution intercalation through blending of organoclay 30B with the PAI solution. The nanostructures and properties of the PAI/organoclay were investigated using FTIR spectroscopy, XRD, transmission electron microscopy (TEM), TGA, DSC and microscale combustion calorimetry. XRD and TEM revealed the good dispersion of organoclay in the polymer matrix. TGA indicated that the addition of organoclay into the PAI matrix increases the thermal decomposition temperatures and char yields of the nanocomposites. Organoclay shows a positive effect in improving the flame retardancy of the PAI, reflecting the decrease in heat release rate, the total heat release and the heat release capacity of the PAI nanocomposites, while the thermal stability of the PAI nanocomposites only increased slightly compared with the neat polymer. © 2013 Society of Chemical Industry  相似文献   

15.
Porous Nylon 6 nanofibers were prepared using silica nanoparticles as the template. Firstly, Nylon 6/silica composite nanofibers were prepared as precursors by electrospinning Nylon 6 solutions containing different contents of silica nanoparticles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the surface morphology and the inner structure of composite nanofibers; where it was found that silica nanoparticles were distributed both inside and on the surface of nanofibers. Analytical techniques [Fourier transform infrared (FTIR), differential scanning calorimetry, thermal gravimetric analysis (TGA), and wide‐angle X‐ray diffraction) were used to study the structure and properties of these composite nanofibers. The glass transition, melting, and crystallization processes of the fibers were affected by the addition of silica nanoparticles. Secondly, porous Nylon 6 nanofibers were obtained by removing silica nanoparticles via hydrofluoric acid treatment. The removal of silica nanoparticles was confirmed using FTIR and TGA tests. SEM and TEM observations revealed the formation of the porous structure in these nanofibers. After the formation of the porous structure, Brunauer–Emmett–Teller specific surface areas of nanofibers were increased as compared to solid Nylon 6 and composite nanofibers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
The reaction mechanism and kinetics of CeO2 synthesis using a solvent-deficient method are investigated by simultaneous thermogravimetric analysis (TGA)/differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The decomposition process of the cerium(III) nitrate hexahydrate and ammonium bicarbonate precursor mixture with four observed stages is monitored using TGA/DSC measurements in a nonisothermal regime with heating rates of 5, 10, 15 and 20?°C min?1. The proposed mechanism indicates a complex synthesis with several parallel reactions, some of which occur at room temperature. A detailed kinetic analysis is performed using isoconversional (expanded Friedman, modified Coats-Redfern and Kissinger) and model fitting (Nth order and nucleation and growth models) methods. The first three stages are best described by the Nth order model with activation energy values of 21, 53 and 90?kJ?mol?1. The last stage, during which ammonium nitrate decomposition occurs, is best fit by the nucleation and growth model and has an activation energy of 129?kJ?mol?1. The proposed mechanism, supported by the kinetic analysis in our study, indicates that CeO2 has already formed before the reaction reaches 200?°C. The average crystallite size of CeO2 synthesized at 300?°C, which was calculated from the XRD measurements and observed in the SEM and TEM data, is between 10 and 20?nm.  相似文献   

17.
Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB2O4) nanoparticles and tetraborate (CaB4O7) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures.  相似文献   

18.
Bifunctional lignosulfonate-based catalysts (LS-M) with Lewis acid and basic sites were designed and prepared by immobilizing metal ions on lignosulfonate. Catalysts were characterized by XRD, XPS, SEM, EDX, TEM, TGA, NH3/CO2-TPD and FTIR, and applied in transformation of carbohydrate biomass to furan derivatives (HMF/furfural) in mixed water/THF systems. With LS-Cr as catalyst, the optimized yields of HMF from cellulose, glucose and mannose were 46.3%, 60.4% and 68.8%, and that of furfural from xylan, xylose and arabinose were 40.2%, 73.1% and 51.6%, respectively. The catalysts could be easily recycled with negligible wastage of the active metal ions.  相似文献   

19.
Nanocomposites of iron oxide (Fe3O4) with a sulfonated polyaniline, poly(aniline‐co‐aminonaphthalenesulfonic acid) [SPAN(ANSA)], were synthesized through chemical oxidative copolymerization of aniline and 5‐amino‐2‐naphthalenesulfonic acid/1‐amino‐5‐naphthalenesulfonic acid in the presence of Fe3O4 nanoparticles. The nanocomposites [Fe3O4/SPAN(ANSA)‐NCs] were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, elemental analysis, UV–visible spectroscopy, thermogravimetric analysis (TGA), superconductor quantum interference device (SQUID), and electrical conductivity measurements. The TEM images reveal that nanocrystalline Fe3O4 particles were homogeneously incorporated within the polymer matrix with the sizes in the range of 10–15 nm. XRD pattern reveals that pure Fe3O4 particles are having spinel structure, and nanocomposites are more crystalline in comparison to pristine polymers. Differential thermogravimetric (DTG) curves obtained through TGA informs that polymer chains in the composites have better thermal stability than that of the pristine copolymers. FTIR spectra provide information on the structure of the composites. The conductivity of the nanocomposites (~ 0.5 S cm?1) is higher than that of pristine PANI (~ 10?3 S cm?1). The charge transport behavior of the composites is explained through temperature difference of conductivity. The temperature dependence of conductivity fits with the quasi‐1D variable range hopping (quasi‐1D VRH) model. SQUID analysis reveals that the composites show ferromagnetic behavior at room temperature. The maximum saturation magnetization of the composite is 9.7 emu g?1. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

20.
康军沛  葛婷  刘卅  杨军忠  任力 《化工学报》2017,68(1):424-429
采用纳米球磨-超声搅拌工艺制备了β-磷酸三钙粉体,并与传统固相合成工艺进行了对比研究。采用差示扫描量热(DSC)、X射线衍射(XRD)、红外(FTIR)、纳米粒度测试、扫描电镜(SEM)、透射电镜(TEM)及X射线荧光光谱(XRF)等手段对两种工艺所制备粉体进行了纯度和粒度表征。结果表明:相比传统工艺,经过纳米球磨-超声搅拌工艺制备出的β-TCP粉体纯度可达97%以上,平均粒径为666 nm。粉体的纯度高、粒径分布更均匀。同时,纳米球磨加工后的原料平均粒度更小,分散性更好。该工艺有望用于粉体材料的固相合成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号