首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Poly(lactic acid) (PLA) is a biobased polymer made from biomass having high mechanical properties for engineering materials applications. However, PLA has certain limited properties such as its brittleness and low heat distortion temperature. Thus, the aim of this study is to improve toughness of PLA by blending with poly(butylene succinate‐co‐adipate) (PBSA), the biodegradable polymer having high toughness. Polymer blends of PLA and PBSA were prepared using a twin screw extruder. The melt rheology and the thermal property of the blends were examined. Further the blends were fabricated into compression molded parts and melt‐spun fiber and were subjected to tensile and impact tests. When the PBSA content was low, PBSA phase was finely dispersed in the PLA matrix. On the other hand, when the PBSA content was high, this minor phase dispersed as a large droplet. Mechanical properties of the compression molded parts were affected by the dispersion state of PBSA minor component in PLA matrix. Impact strength of the compression molded parts was also improved by the addition of soft PBSA. The improvement was pronounced when the PBSA phase was finely dispersed in PLA matrix. However, the mechanical property of the blend fibers was affected by the postdrawing condition as well as the PBSA content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41856.  相似文献   

2.
A series of blends based on poly(lactic acid) (PLA) and poly[(butylene succinate)‐co‐adipate] (PBSA) as well as their nanocomposites with nanoclay (PLA/PBSA/Clay ternary nanocomposites) were prepared using the twin‐screw extruder. The blends were prepared for PBSA contents ranging from 25 to 75 wt % and their corresponding nanocomposites were prepared at a single‐clay concentration. The morphology and structure of the blends and the nanocomposites were examined using field emission scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction. Rheological properties (dynamic oscillatory shear measurements and elongational viscosities) of the blends, nanocomposites, and pure components were studied in detail. The strain hardening intensity of different blends and nanocomposites was compared with the behavior of the pure components. Strong strain hardening behavior was observed for blends composed of 50 wt % and higher PBSA content. However, the effect of PBSA content on the elongational viscosity was less pronounced in PLA/PBSA/Clay ternary nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Biodegradable poly(butylene succinate‐co‐butylene adipate) (PBSA)/multiwalled carbon nanotubes (MWCNTs) nanocomposites were prepared via a simple melt‐compounding method at low MWCNTs contents. Scanning and transmission electron microscopy observations revealed a relatively nice dispersion of MWCNTs throughout the PBSA matrix. Both the nonisothermal and isothermal melt crystallizations of PBSA were enhanced significantly in the nanocomposites relative to neat PBSA because of the presence of MWCNTs; however, the crystal structure of PBSA remained unchanged. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Poly(butylene succinate‐co‐butylene adipate) (PBSA)/graphene oxide (GO) nanocomposites were synthesized via in situ polymerization for the first time. Atomic force microscopy demonstrated the achievement of a single layer of GO, and transmission electron microscopy proved the homogeneous distribution of GO in the PBSA matrix. Fourier transform infrared spectroscopy results showed the successful grafting of PBSA chains onto GO. With the incorporation of 1 wt % GO, the tensile strength and flexural modulus of the PBSA were enhanced by 50 and 27%, respectively. The thermal properties characterized by differential scanning calorimetry and thermogravimetric analysis showed increases in the melting temperatures, crystallization temperatures, and thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4075–4080, 2013  相似文献   

5.
Poly(butylene terephthalate) (PBT)/poly(ethylene‐octene) (PEO) blends containing 1.0 wt% epoxy and from 0 to 30 wt% PEO were obtained by extrusion and injection molding. The blends were composed of two pure amorphous phases. The observed torque increases showed that epoxy reacted with PBT, leading to a fine and homogeneous morphology up to 15 wt% PEO content, which appeared larger and more heterogeneous at higher PEO contents. Toughness values fifteen‐fold those of pure PBT were obtained with only 13 wt% PEO. The tensile properties, including ductility, decreased with increasing PEO content, indicating that the adhesion level necessary for high ductility is higher than that necessary for super‐toughness. The inter‐particle distance (τ) was the main parameter that controlled toughness. The comparison of the results of this work with those of the same PBT/PEO blends with two different compatibilizers provides additional strong evidence of the adhesion at the interphase as the main parameter that controls the critical τ in these modified thermoplastic/rubber blends.  相似文献   

6.
The effect of organically modified clay on the morphology and properties of poly(propylene) (PP) and poly[(butylene succinate)‐co‐adipate] (PBSA) blends is studied. Virgin and organoclay modified blends were prepared by melt‐mixing of PP, PBSA and organoclay in a batch‐mixer at 190 °C. Scanning electron microscopy studies revealed a significant change in morphology of PP/PBSA blend in the presence of organoclay. The state of dispersion of silicate layers in the blend matrix was characterized by X‐ray diffraction and transmission electron microscopic observations. Dynamic mechanical analysis showed substantial improvement in flexural storage modulus of organoclay‐modified blends with respect to the neat polymer matrices or unmodified blends. Tensile properties of virgin blends also improved in the presence of organoclay. Thermal stability of virgin blends in air atmosphere dramatically improved after modification with organoclay. The effect of organoclay on the melt‐state liner viscoelastic properties of virgin blends was also studied. The non‐isothermal crystallization behavior of homopolymers, virgin, and organoclay‐modified blends were studied by differential scanning calorimeter. The effect of incorporation of organoclay on the cold crystallization behavior of PP/PBSA blends is also reported.

  相似文献   


7.
Blends of two biodegradable and semicrystalline polymers, poly(L ‐lactic acid) (PLLA) and poly(butylene succinate‐co‐adipate) (PBSA), were prepared by solvent casting in different compositions. The miscibility, morphology, and thermal behavior of the blends were investigated using differential scanning calorimetry and optical microscopy. PLLA was found to be immiscible with PBSA as evidenced by two independent glass transitions and biphasic melt. Nonisothermal crystallization measurements showed that fractionated crystallization behavior occurred when PBSA was dispersed as droplets, evidenced by multiple crystallization peaks at different supercooling levels. Crystallization and morphology of the blends were also investigated through two‐step isothermal crystallization. For blends where PLLA was the major component, different content of PBSA did not make a significant difference in the crystallization mechanism and rate of PLLA. For blends where PBSA was the major component, the crystallization rate of PBSA decreased with increasing PLLA content, while the crystallization mechanism did not change. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

8.
Biodegradable polymer blends based on poly(lactic acid) (PLA) and poly[(butylene succinate)‐co‐adipate] (PBSA) were prepared with a laboratory internal mixer. An epoxy‐based, multifunctional chain extender was used to enhance the melt strength of the blends. The morphology of the blends was observed with field emission scanning electron microscopy. The elongational viscosities of the blends, with and without chain extender, were measured with a Sentmanat extensional rheometer universal testing platform. The blends with chain extender exhibited strong strain‐hardening behavior, whereas the blends without chain extender exhibited only weak strain‐hardening behavior. Measurements of the linear viscoelastic properties of the melts suggested that the chain extender promoted the development of chain branching. The results show that PBSA contributed to significant improvements in the ductility of the PLA/PBSA blends, whereas the chain extender did not have a significant effect on the elastic modulus and strain at break of the blends. The combined blending of PLA with PBSA and the incorporation of the chain extender imparted both ductility and melt strength to the system. Thus, such an approach yields a system with enhanced performance and processability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Synthesis and characterization of a novel toughener–compatibilizer for polypropylene (PP)–montmorillonite (MMT) nanocomposites were conducted to provide enhanced mechanical and thermal properties. Poly(ethylene oxide) (PEO) blocks were synthetically grafted onto maleic anhydride‐grafted polystyrene‐block‐poly(ethylene/butylene)‐block‐polystyrene (SEBS‐g‐MA). Special attention was paid to emphasize the effect of PEO‐grafted SEBS (SEBS‐g‐PEO) against SEBS‐g‐MA on morphology, static/dynamic mechanical properties and surface hydrophilicity of the resultant blends and nanocomposites. It was found that the silicate layers of neat MMT are well separated by PEO chains chemically bonded to nonpolar SEBS polymer without needing any organophilic modification of the clay as confirmed by X‐ray diffraction and transmission electron microscopy analyses. From scanning electron microscopy analyses, elastomeric domains interacting with MMT layers via PEO sites were found to be distributed in the PP matrix with higher number and smaller sizes than the corresponding blend. As a benefit of PEO grafting, SEBS‐g‐PEO‐containing nanocomposite exhibited not only higher toughness/impact strength but also increased creep recovery, as compared to corresponding SEBS‐g‐MA‐containing nanocomposite and neat PP. The damping parameter of the same nanocomposite was also found to be high in a broad range of temperatures as another advantage of the SEBS‐g‐PEO toughener–compatibilizer. The water contact angles of the blends and nanocomposites were found to be lower than that of neat hydrophobic PP which is desirable for finishing processes such as dyeing and coating. © 2018 Society of Chemical Industry  相似文献   

10.
Biodegradable composites of poly(butylene succinate‐co‐butylene adipate) (PBSA) reinforced by poly(lactic acid) (PLA) fibers were developed by hot compression and characterized by Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic mechanical analyzer, and tensile testing. The results show that PBSA and PLA are immiscible, but their interface can be improved by processing conditions. In particular, their interface and the resulting mechanical properties strongly depend on processing temperature. When the temperature is below 120 °C, the bound between PBSA and PLA fiber is weak, which results in lower tensile modulus and strength. When the processing temperature is higher (greater than 160 °C), the relaxation of polymer chain destroyed the molecular orientation microstructure of the PLA fiber, which results in weakening mechanical properties of the fiber then weakening reinforcement function. Both tensile modulus and strength of the composites increased significantly, in particular for the materials reinforced by long fiber. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43530.  相似文献   

11.
Polymer composites based on biodegradable polylactide/poly[(butylene succinate)‐co‐adipate] (PLA/PBSA) blend and pristine and organically modified clays have been prepared via melt‐mixing in a batch‐mixer. Four different surfactants have been used to modify the pristine montmorillonite (MMT) clay. The weight ratio of the PLA and PBSA is 70:30, while the weight of the MMT is fixed at 6%. The surface morphologies of the unmodified and organoclay‐modified blends have been studied by field‐emission scanning electron microscopy. Results show that the domain size of the dispersed PBSA‐phase is reduced with the addition of organoclay and the extent of this reduction in the size of PBSA domain is dependent on not only the interlayer spacing of the clay but also enthalpic interaction between the clay surface and the polymer blend. The degree of dispersion of silicate layers in the blend matrix has been characterised by X‐ray diffraction. The improved adhesion between the phases and the fine morphology of the dispersed phase contributes to the improvement in the mechanical and thermal properties of the final polymer blend–organoclay composites over PLA/PBSA blend. On the basis of these results, we propose a general understanding on how the morphology of the blends is related to the final properties.

  相似文献   


12.
Thin films with (nano)fibrillar morphologies were successfully obtained in fully-biobased poly(butylene succinate-co-adipate)/poly(amide-11) blends (PBSA/PA11, 85/15 wt/wt) using an extrusion-blowing process. Impacts of PA11 grade and take-up ratio on the morphology of PBSA/PA11 were particularly highlighted. Scanning electron microscopy analyses indicated that PA11 with high melt volume-flow rates are beneficial to the development of (nano)fibrillar morphologies in PBSA/PA11 blown film. On the contrary, unstable film blowing processing without fibrillar morphologies was attested for PA11 with low melt volume-flow rates. Increasing the take-up ratio during extrusion-blowing of PBSA/PA11 clearly generates finer PA11 (nano)fibrils into PBSA. Fibril diameters down to 300 nm could be reached with an optimal PA11 grade promoting enhanced mechanical properties (higher ductility and toughness). The formation of stable PA11 (nano)fibrils into PBSA is discussed via rheological assessments of viscosity/elasticity ratio. A specific attention was finally paid to the PBSA strain-hardening behavior in PBSA/PA11 using elongational rheological tests. PA11 (nano)fibrillation helps maintaining the strong PBSA strain-hardening and thus play a major role on the processability of PBSA/PA11 blends by extrusion blowing. As a conclusion, the PA11 grade represents a crucial parameter to control the production of PBSA/PA11 blown films with refined (nano)fibrillar structures and enhanced physico-chemical properties.  相似文献   

13.
A new method is described to prepare composites of poly[(butylene succinate)‐co‐(butylene adipate)] (PBSA) with an organophilic clay having a particular functional group, namely twice‐functionalized organoclay (TFC). TFCs were produced by treating Cloisite 25A® with (glycidyloxypropyl)trimethoxy silane (GPS) or (methacryloyloxypropyl)trimethoxy silane (MPS). Reaction of the silane compound with the organoclay surface was monitored by Fourier‐transform infrared spectroscopy (FTIR). PBSA composites with the three different clays were prepared successfully via melt mixing. The d spacing and the morphology of the composites were monitored by X‐ray diffraction and by transmission electron microscopy. The linear storage modulus of the composites in the melt state increased significantly as a result of incorporation of TFC. Tensile modulus and strength at break of PBSA/TFC–GPS and those of PBSA/TFC–MPS were far superior to those of PBSA/C25A. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
Poly(butylene succinate‐co‐adipate) (PBSA) and two types of SiO2 (hydrophilic or hydrophobic) were used to modify poly(L ‐lactic acid) (PLLA). The mechanical properties, rheological and thermal behavior, phase morphology, and thermal stability of PLLA/PBSA/SiO2 composites were investigated. The impact strength, flexural strength, and modulus of PLLA/PBSA blends increased after the addition of hydrophobic SiO2 without decreasing the elongation at break, and the elongation at break monotonically decreased with increasing hydrophilic SiO2 content. The melt elasticity and viscosity of the PLLA/PBSA blend increased with the addition of SiO2. The hydrophilic SiO2 was encapsulated by the dispersed PBSA phase in the composites, which led to the formation of a core–shell structure, whereas the hydrophobic SiO2 was more uniformly dispersed and mainly located in the PLLA matrix, which was desirable for the optimum reinforcement of the PLLA/PBSA blend. The thermogravimetric analysis results show that the addition of the two types of SiO2 increased the initial decomposition temperature and activation energy and consequently retarded the thermal degradation of PLLA/PBSA. The retardation of degradation was prominent with the addition of hydrophobic SiO2. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Blends of poly(sulfone of bisphenol A) (PSU) with poly(butylene terephthalate) (PBT) were obtained by direct injection moulding across the composition range. The two components of the blends reacted slightly in the melt state, producing linear copolymers. The slight changes observed in the two glass transition temperatures indicate that the copolymers were present in the two amorphous phases of the blends. The observed reactions and the high viscosity of the matrix of the PSU‐rich compositions led to a very fine morphology which could not be attained in the PBT‐rich compositions due to the low viscosity of the matrix and the direct injection moulding procedure used. This procedure is fast and economically advantageous, but leads to poor mixing. The different morphologies influenced neither the modulus nor the yield stress, which tended to follow the rule of mixtures. However, the low fracture properties of the PBT‐rich compositions contrasted with the ductility behaviour, and even the impact strength of the PSU‐rich blends, which also tended to be proportional to the blend composition. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Biodegradable composites consisting of aliphatic polyesters (poly[(butylenes succinate)‐co‐(butylenes adipate)] (PBSA)) and Bombyx mori silk fibers coated with carbon nanotubes (CNTs) were prepared by melt compression molding. The mechanical properties of PBSA were enhanced by the incorporation of a small amount (3 wt%) of CNT‐coated silk fibers, while allowing its potential biodegradability to be retained, which could make these composites good candidates for commodity materials such as general‐purpose plastics. This improvement is attributed to the interactions between PBSA and CNT‐coated silk fibers in the composites. The average interfacial shear strength of the composites consisting of CNT‐coated silk fibers and PBSA matrix was 1.7 MPa, as measured by the microbond droplet test, while that of composites consisting of pure silk fibers and PBSA was only 1.1 MPa. The morphology of the CNT‐coated silk fiber‐reinforced composites was observed using scanning electron microscopy. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
In this study, we prepared immiscible blends of 75 wt % polylactide (PLA) with 25 wt % poly[(butylene adipate)-co-terephthalate] (PBAT) through an injection-molding (IM) process and a twin-screw extruder (TSE) followed by IM. An amorphous polylactide (A-PLA) and a semicrystalline polylactide (SC-PLA) were used as the matrixes to investigate the matrix crystallization effect on the morphology and property development of the blends with only IM. A blend of A-PLA with 25 wt % poly[(butylene succinate)-co-adipate] (PBSA) was also prepared through IM to compare its properties with those of the A-PLA–PBAT blends. The morphological, thermal, solid viscoelastic, tensile, and flexural properties of the blends were compared, and their dependency on the evolution of the blend morphology was analyzed. The tensile results show that when IM was used as the sole processing technique, the ductility and toughness were significantly improved only when SC-PLA was used as the matrix. Preprocessing through TSE also resulted in the enhancement of the blend ductility. In A-PLA–PBSA, the vitrification of PLA hindered the crystallization of PBSA to very low temperatures (<0°C) and resulted in a very nonuniform structure with weak intermolecular bonding between phases. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47636.  相似文献   

18.
Two series of biodegradable polymer blends were prepared from combinations of poly(L ‐lactide) (PLLA) with poly(?‐caprolactone) (PCL) and poly(butylene succinate‐co‐L ‐lactate) (PBSL) in proportions of 100/0, 90/10, 80/20, and 70/30 (based on the weight percentage). Their mechanical properties were investigated and related to their morphologies. The thermal properties, Fourier transform infrared spectroscopy, and melt flow index analysis of the binary blends and virgin polymers were then evaluated. The addition of PCL and PBSL to PLLA reduced the tensile strength and Young's modulus, whereas the elongation at break and melt flow index increased. The stress–strain curve showed that the blending of PLLA with ductile PCL and PBSL improved the toughness and increased the thermal stability of the blended polymers. A morphological analysis of the PLLA and the PLLA blends revealed that all the PLLA/PCL and PLLA/PBSL blends were immiscible with the PCL and PBSL phases finely dispersed in the PLLA‐rich phase. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Poly(butylene terephthalate)/high density polyethylene (PBT/HDPE) blends and PBT/HDPE‐grafted maleic anhydride (PBT/HDPE‐g‐MAH) blends were prepared by the reactive extrusion approach, and the effect of blend compositions on the morphologies and properties of PBT/HDPE blends and PBT/HDPE‐g‐MAH blends was studied in detail. The results showed that flexural strength, tensile strength, and notched impact strength of PBT/HDPE blends decreased with the addition of HDPE, and flexural strength and tensile strength of PBT/HDPE‐g‐MAH blends decreased, while the notched impact strength of PBT/HDPE‐g‐MAH increased with the addition of HDPE‐g‐MAH. Compared with PBT/HDPE blends, the dimension of the dispersed phase particles in PBT/HDPE‐g‐MAH blends was decreased and the interfacial adhesion was increased. On the other hand, the effects of HDPE and HDPE‐g‐MAH contents on the crystalline and the rheological properties of the blends were also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 6081–6087, 2006  相似文献   

20.
The effects of compatibilization on the toughening of polypropylene (PP) by melt blending with styrene/ethylene‐butylene/styrene tri‐block copolymer (SEBS) in a twin‐screw extruder were investigated. The compatibilizers used were SEBS functionalized with maleic anhydride (SEBS‐g‐MA), PP functionalized with acrylic acid (PP‐g‐AA), and bifunctional compound p‐phenylenediamine (PPD). The effects of the compatibilization were evaluated through the mechanical properties as well as through the determination of the phase morphology of the blends by scanning electron microscopy. Reactive compatibilized blends show up to a 30‐fold increase in impact strength compared with neat PP; likely the result of the reaction of the bifunctional compound (PPD) with the acid acrylic and maleic anhydride groups, this increase in strength rendered both morphological and mechanical stability to these blends. The addition of PPD to the blends significantly changed their phase morphologies, leading to larger average diameters of the dispersed particles, probably as a result of the morphological stabilization at the initial processing steps during extrusion, with the occurrence of chemical reactions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3466–3479, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号