首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel magnetic adsorbent, poly(catechol‐1,4‐butanediamine)‐coated Fe3O4 composite (Fe3O4@PCBA), was successfully fabricated via an easy and gentle method according to the mussel‐inspired adhesion property of polydopamine. Effects of many factors on the adsorption performance of Fe3O4@PCBA for Cr(VI) were investigated, including temperature, pH value, contacting time, adsorbent dosage, and initial Cr(VI) concentration. The thermodynamics, adsorption isotherm, kinetics, and intraparticle diffusion of adsorption were also studied systematically. Results indicated that the removal rate of Cr(VI) was approximately close to 100% when the initial concentration was less than 120 mg/L, and the maximum uptake capacity of Fe3O4@PCBA for Cr(VI) was 280.11 mg/g complied with Langmuir isotherm model. Accordingly, the nocuous Cr(VI) could be partially reduced to Cr(III) during the adsorption period. Hopefully, this strategy could be extended to prepare series of magnetic Fe3O4@catechol–amine adsorbents with different amino and phenolic hydroxyl groups for Cr(VI) removal. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46530.  相似文献   

2.
In this study, magnetic chitosan modified with thiosemicarbazide (TSC‐Fe3O4/CTS) was facilely synthesized with glutaraldehyde as the crosslinker, and its application for removal of Cu(II) ions was investigated. The as‐prepared TSC‐Fe3O4/CTS was characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffraction (XRD), and scanning electron microscopy (SEM). The results showed that TSC‐Fe3O4/CTS has high adsorption capacity and selectivity towards Cu(II) ions. Adsorption experiments were carried out with different parameters such as pH, solution temperature, contact time and initial concentration of Cu(II) ions. The adsorption process was better described by the pseudo‐second‐order model. The sorption equilibrium data was fitted well with the Langmuir isotherm model and the maximum adsorption capacity toward Cu(II) ions was 256.62 mg/g. The thermodynamic parameters indicated that the adsorption process of Cu(II) ions was exothermic spontaneous reaction. Moreover, this adsorbent showed excellent reusability and the adsorption property remained stable after five cycles. This adsorbent is believed to be one of the promising and favorable adsorbent for the removal of Cu(II) ions from aqueous solution. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44528.  相似文献   

3.
Micrometer‐sized superparamagnetic poly(styrene–glycidyl methacrylate)/Fe3O4 spheres were synthesized by two‐stage dispersion polymerization with modified hydrophobic Fe3O4 nanoparticles, styrene (St), and glycidyl methacrylate (GMA). The morphology and properties of the magnetic Fe3O4–P (St‐GMA) microspheres were examined by scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, thermogravimetric analysis, and attenuated total reflectance. The average size of the obtained magnetic microspheres was 1.50 μm in diameter with a narrow size distribution, and the saturation magnetization of the magnetic microspheres was 8.23 emu/g. The magnetic Fe3O4–P (St‐GMA) microspheres with immobilized iminodiacetic acid–Cu2+ groups were used to investigate the adsorption capacity and selectivity of the model proteins, bovine hemoglobin (BHb) and bovine serum albumin (BSA). We found that the adsorption capacity of BHb was as high as 190.66 mg/g of microspheres, which was 3.20 times greater than that of BSA, which was only 59.64 mg/g of microspheres as determined by high‐performance liquid chromatography. With a rather low nonspecific adsorption, these microspheres have great potential for protein separation and purification applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43005.  相似文献   

4.
This article describes a single-step reproducible approach for the surface modification of micrometer-sized polystyrene (PS) core particles to prepare electromagnetic PS/polyaniline–Fe3O4 (PS/PANi–Fe3O4) composite particles. The electromagnetic PANi–Fe3O4 shell was formed by simultaneous seeded chemical oxidative polymerization of aniline and precipitation of Fe3O4 nanoparticles. The weight ratio of PS to aniline was optimized to produce core–shell structure. PS/PANi–Fe3O4 composite particles were used as adsorbent for the removal of Cr(VI) via anion-exchange mechanism. The composite particles possessed enough magnetic property for magnetic separation. The adsorption was highly pH dependent. Adsorption efficiency reached 100% at pH 2 in 120 min when 0.05 g of composite particles was mixed with 30 mL 5 mg L−1 Cr(VI) solution. The adsorption isotherm fitted best with Freundlich model and maximum adsorption capacity approached 20.289 mg g−1 at 323 K. The prepared composite was found to be an useful adsorbent for the removal of soluble Cr(VI) ions. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47524.  相似文献   

5.
A novel magnetic adsorbent alginate/polyethyleneimine (ALG/PEI)n/MN was developed for removal of anionic dyes from aqueous solution in this study. (ALG/PEI)n/MN was prepared by depositing ALG/PEI multi‐layers onto amine‐modified Fe3O4 microspheres through layer‐by‐layer method. The morphologies and structures of the adsorbent were characterized by scanning electron microscopy, X‐ray diffractometer, and Fourier transform infrared spectrometer, respectively, and its performance in adsorption of anionic dye (acid orange 10, AO10) under varied experimental conditions were also investigated. The results revealed that the uptake capacity of AO10 by (ALG/PEI)n/MN increased with the number of coated (ALG/PEI) bilayer on the adsorbents, and the maximum adsorption capacity for AO10 by (ALG/PEI)4MN was 246.3 mg g?1 at 25 °C. The adsorption process was exothermic and well described by the pseudo‐second order kinetic model and the Langmuir isothermal model. Moreover, (ALG/PEI)4/MN showed good reusability and excellent magnetic separability. All the results demonstrate that (ALG/PEI)4/MN is a potential recyclable adsorbent for removal of anionic dyes from wastewater. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45876.  相似文献   

6.
The epoxy‐group‐containing microspheres from cross‐linked glycidyl methacrylate and methyl methacrylate, poly(GMA–MMA), were prepared by suspension polymerisation. The epoxy groups of the poly(GMA–MMA) microspheres were used for grafting with an anionic polymer polyethylenimine (PEI) to prepare non‐specific affinity adsorbents (poly(GMA–MMA)–PEI) for bilirubin removal. The specificity of the poly(GMA–MMA)–PEI adsorbent to bilirubin was further increased by immobilization of human serum albumin (HSA) via adsorption onto PEI‐grafted poly(GMA–MMA) adsorbent. Various amounts of HSA were immobilized on the poly(GMA–MMA)–PEI adsorbent by changing the medium pH and initial HSA concentration. The maximum HSA content was obtained at 68.3 mg g?1 microspheres. The effects of pH, ionic strength, temperature and initial bilirubin concentration on the adsorption capacity of both adsorbents were investigated in a batch system. Separation of bilirubin from human serum was also investigated in a continuous‐flow system. The bilirubin adsorption on the poly(GMA–MMA)–PEI and poly(GMA–MMA)–PEI–HSA was not well described by the Langmuir model, but obeyed the Freundlich isotherm model. The poly(GMA–MMA)–PEI affinity microspheres are stable when subjected to sanitization with sodium hydroxide after repeated adsorption–desorption cycles. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
Polyethyleneimine (PEI) modified palygorskite (Pal) was used for the adsorption of Cr(VI) in aqueous solution. The absorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). Characterized results confirmed that the Pal has been successfully modified by PEI. The modification of PEI increased the Cr(VI) adsorption performance of the Pal by the adsorption combined reduction mechanism, and amino groups of the adsorbent play the main role in the enhanced Cr(VI) adsorption. The maximum adsorption capacity was 51.10 mg·g−1 at pH 4.0 and 25 °C. The adsorption kinetics of Cr(VI) on the adsorbent conforms to the Langmuir isotherm model. The maximum adsorption occurs at pH 3, and then the adsorption capacity of PEI-Pal was decreased with the increase of pH values. The adsorption kinetics of Cr(VI) on PEI-Pal was modeled with pseudo-second-order model. The addition of Cl, SO42− and PO43− reduced the Cr(VI) adsorption by competition with Cr(VI) for the active sites of PEI-Pal. The Cr(VI) saturated PEI-Pal can be regenerated in alkaline solution, and the adsorption capacity can still be maintained at 30.44 mg·g−1 after 4 cycles. The results demonstrate that PEI-Pal can be used as a potential adsorbent of Cr(VI) in aqueous solutions.  相似文献   

8.
Fe3O4 coated glycine doped polypyrrole magnetic nanocomposite (Fe3O4@gly-PPy NC) was prepared via coating of suspended Fe3O4 nanoparticles with gly-PPy. FE-SEM and HR-TEM images indicated that Fe3O4 nanoparticles were encapsulated by precipitating gly-PPy moieties. Chromium(VI) adsorption followed a Langmuir isotherm with maximum capacity of 238–303 mg/g for a temperature range of 25–45 °C at pH 2. The adsorption process was governed by the ionic interaction and the reduction of Cr(VI) to Cr(III) by the PPy moiety. Results showed that NCs are effective adsorbents for the removal of Cr(VI) from wastewater and can be separated by external magnetic field from the reactor.  相似文献   

9.
Here, we report the synthesis of Fe3O4/G/PANI composite containing magnetite nanoparticles (Fe3O4), graphene sheets (G), and polyaniline (PANI) via chemical route for removal of toxic Cr (VI) from water. TEM image shows the formation of uniformly distributed magnetite nanoparticles on graphene/PANI composite. HRTEM images shows the formation of crystalline magnetite nanoparticles showing lattice fringes with inter‐planner distance 0.21 nm. The magnetic measurement shows magnetization 22 emu/g and ferromagnetic property of the adsorbent. The equilibrium adsorptions were well‐described by the Langmuir isotherm model and shows maximum adsorption capacity 153.54 mg/g at pH 6.5 and temperature 30 °C. The kinetics data well fitted by pseudo‐second‐order model and around 86% Cr (VI) removal completed within 20 min. The Cr (VI) removal capacitive decreases with increase in pH and ionic strength. The adsorbent shows leaching of iron nanoparticles at pH 1 whereas stable in solution having pH 2 and more. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44002.  相似文献   

10.
《分离科学与技术》2012,47(1):111-122
Abstract

A possibility of Cr(VI) removal by the adsorption method is discussed in the paper. An adsorbent were hydrogel chitosan beads are produced by the phase inversion method (by changing pH). The possibility of removing Cr(VI) ions by both pure chitosan hydrogel and its chelate compounds (chitosan cross‐linked with Cu(II) and Ag(I) ions) was investigated. The adsorption proceeded from the solutions of potassium dichromate and ammonium dichromate (NH4)2Cr2O7 and K2Cr2O7. The process rates and adsorption isotherms were determined and described by relevant equations. The process rate was described by the pseudo‐ and second‐order equations, and adsorption equilibria by the Langmuir equations. A slight advantageous change in adsorption properties of chitosan beads was revealed after cross‐linking (for chromium concentration up to 10 g/dm3). A maximum adsorption was 1.1 gCr/g chitosan. Results of the studies show that chitosan hydrogel proves useful in the removal of Cr(VI) ions, additionally, cross‐linking with Cu(II) and Ag(I) ions has an advantageous effect in the case of low‐concentrated solutions.  相似文献   

11.
A catalyst consisting of Cu0.5Mg0.5Fe2O4 (CMF) supported on carbon nanotubes (CNTs) which exhibits great potential as an adsorbent for treating Cr(VI)-contaminated wastewater has been successfully prepared. The ferrite possesses excellent magnetic properties, while CNTs have the advantage of a large surface area. This composite material not only prevents the aggregation of magnetic materials and enhances the exposure of active sites but also effectively solves the recycling problem of CNTs. Our results show that the adsorption capacity of Cu0.5Mg0.5Fe2O4–carbon nanotubes (CMF-CNTs) for Cr(VI) wastewater (45.60 mg/g) is 1.49 times higher than that of Cu0.5Mg0.5Fe2O4 (30.48 mg/g). Compared to a single catalyst, CMF-CNTs not only improve the dispersibility of magnetic materials but also exhibit synergistic effects between the composite materials, enhancing the chemical adsorption capacity. After five consecutive adsorption and desorption experiments, the adsorption capacity of CMF-CNTs remains at 88% of its initial value. Furthermore, the study of the catalyst before and after adsorption by XPS reveals that the valence state transition of Fe3+/Fe2+ and Cu2+/Cu+ plays a crucial role in the adsorption process. The results of this study demonstrate the potential of using waste materials for effective wastewater treatment and provide insights into the development of new adsorbents for pollutant removal.  相似文献   

12.
BACKGROUND: Phosphate is one of the main contaminants responsible for the eutrophication of surface waters, and adsorption is a potential treatment method for this pollutant. A magnetic adsorbent manufactured from magnetite (Fe3O4) can be recovered easily from treated water by magnetic force, without requiring further downstream treatment. In this research, the surface of magnetite modified with aluminum and silica (Al/SiO2/Fe3O4) was used to adsorb phosphate in an aqueous solution in a batch system. RESULTS: The optimum solution pH for phosphate adsorption by Al/SiO2/Fe3O4 was found to be 4.5. The phosphate adsorption behavior of Al/SiO2/Fe3O4 was in good agreement with both the Langmuir and Freundlich adsorption isotherm, and the maximum adsorption capacity (qm) and Gibbs free energy of phosphate was 25.64 mg g?1 and ? 21.47 kJ mol?1, respectively. A pseudo‐second‐order model could best describe the adsorption kinetics, and the derived activation energy was 3.52 kJ mol?1. The optimum condition to desorb phosphate from Al/SiO2/Fe3O4 is provided by a solution with 0.05 mol L?1 NaOH. CONCLUSIONS: Magnetic adsorbent is a potential material for a water treatment method. The results of this study will be helpful in the development of aluminum modified silica magnetic adsorbents that can be used to remove phosphate in aqueous solution. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
A novel preparation method of micron‐sized non‐porous magnetic polymer microspheres with immobilized metal affinity ligands was developed. A modified suspension polymerization of methacrylate (MA) and divinylbenzene (DVB) was performed in the presence of oleic acid‐coated magnetic Fe3O4 nanoparticles to obtain magnetic poly (methacrylate‐divinylbenzene) (mPMA‐DVB) microspheres. Through ammonolysis using ethylenediamine (EDA) and subsequent carboxymethylation with chloroacetic acid, magnetic polymer microspheres with chelate ligands of iminodiacetic acid (IDA) were obtained. Charging with copper ions resulted in magnetic polymer microspheres capable of binding proteins that display metal affinity. The morphology, magnetic properties, and composition of magnetic polymer microspheres were characterized with scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FTIR), respectively. Bovine hemoglobin (BHb) was adopted as a model protein to investigate their affinity adsorption capacity. It was found that the adsorption capacity was as high as 168.2 mg/g microspheres and with rather low non‐specific adsorption. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2174–2180, 2005  相似文献   

14.
Two new adsorbents [β‐cyclodextrin–chitosan (β‐CD–CTS) and β‐cyclodextrin‐6–chitosan (β‐CD‐6‐CTS)] were synthesized by the reaction of β‐cyclodextrin (β‐CD) with epoxy‐activated chitosan (CTS) and the sulfonation of the C‐6 hydroxyl group of β‐cyclodextrin with CTS, respectively. Their structures were confirmed by IR spectral analysis and X‐ray diffraction analysis, and their apparent amount of grafting was determined by ultraviolet spectroscopy. The adsorption properties of β‐CD‐CTS and β‐CD‐6‐CTS for p‐dihydroxybenzene were studied. The experimental results showed that the two new adsorbents exerted adsorption on the carefully chosen target. The highest saturated capacity of p‐dihydroxybenzene of β‐CD‐CTS and β‐CD‐6‐CTS were 51.68 and 46.41 mg/g, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 860–864, 2004  相似文献   

15.
《Polymer Composites》2017,38(12):2779-2787
Polypyrrole/NiFe2O4 (PPy/NiFe2O4) composites were prepared by ultrasonic oxidative polymerization in the presence of NiFe2O4 nanoparticles (NPs). The nanostructure of PPy/NiFe2O4 was confirmed by the X‐ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM) examinations. The adsorption of Cr(VI) onto the PPy/NiFe2O4 composite was lowly pH dependent and the adsorption kinetics followed the Pseudo‐second‐order model. The Langmuir isothermal model well described the adsorption isotherm data and the maximum adsorption capacity increased with the increase of temperature. The maximum adsorption capacity of the PPy/NiFe2O4 for Cr(VI) ions was up to 50 mg/g at pH 2.0. The excellent adsorption characteristic of PPy/NiFe2O4 composite will render it a highly efficient and economically viable adsorbent for Cr(VI) ions removal. POLYM. COMPOS., 38:2779–2787, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
Fe3O4 @C nano-adsorption was prepared by a simple one-step solvothermal synthesis method using Fe (NO3)3 、cyclodextrin as raw materials, meanwhile urea as an alkali source. The obtained samples were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy, and Brunauer-Emmett-Teller. The adsorption behavior of the Fe3O4@C toward Cr (VI) and Congo red was also studied. The core-shell structure Fe3O4@C exhibited large specific surface area of 112.91?m2 g?1. The prepared Fe3O4@C samples demonstrated typical ferromagnetic behavior and high removal capacity in removing the toxic Cr (VI) ions and organic pollutant CR from wastewater, together with facile magnetic separability and good recyclability. Equilibrium adsorption performance was conducted by using the Langmuir and Freundlich model and Freundlich model could simulate the adsorption process of Congo red and Cr (VI) better. The maximum adsorption capacity of Cr (VI) and Congo red was 33.35?mg?g?1 and 262.72?mg?g?1 by calculation.  相似文献   

17.
A novel magnetic adsorbent (EDTA /chitosan/ PMMS) was facilely prepared by reacting chitosan with EDTA anhydride in presence of PEI ‐ coated magnetic microspheres. The as‐synthesized EDTA/ chitosan /PMMS was characterized by XRD, SEM, TGA, FT‐IR , and VSM, and then employed in removal of heavy metals of Pb(II) from aqueous solution. The results of the batch adsorption experiments revealed that the adsorbents had extremely high uptake capacities for Pb(II) in the pH range of 2 to 5.5, and the adsorption kinetics for EDTA/ chitosan /PMMS was consistent with the pseudo – second ‐ order kinetic model. Moreover, its equilibrium data were fitted with the Langmuir isothermal model well, which indicated that the adsorption mechanism was a homogeneous monolayer chemisorptions process. The maximum adsorption capacity of EDTA/ chitosan /PMMS for Pb(II) was found to be 210 mg g ? 1 at pH 4 (30 ° C), and further reuse experiments results suggested that EDTA /chitosan/ PMMS could be a potential recyclable magnetic adsorbent in the practical wastewater treatment. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42384.  相似文献   

18.
《分离科学与技术》2012,47(2):290-299
A novel adsorbent: Fe2+-modified vermiculite was prepared in a two-step reaction. Adsorption experiments were carried out as a function of pH, contact time, and concentration of Cr(VI). It was found that Fe2+-modified vermiculite was particularly effective for the removal of Cr(VI) at pH 1.0. The adsorption of Cr(VI) reached equilibrium within 60 min, and the pseudo-second-order kinetic model best described the adsorption kinetics. The adsorption data follow the Langmuir model more than the Freundlich model. At pH 1.0, the maximum Cr(VI) sorption capacity (Q max ) was 87.72 mg · g?1. Desorption of Cr(VI) from Fe2+-modified vermiculite using NaOH treatment exhibited a higher desorption efficiency by more than 80%. The sorption mechanisms including electrostatic interaction and reduction were involved in the Cr (VI) removal. The results showed that Fe2+-modified vermiculite can be used as a new adsorbent for Cr(VI) removal which has a higher adsorption capacity and a faster adsorption rate.  相似文献   

19.
Using inverse suspension technology, a novel aminated chitosan adsorbent with higher adsorption ability for metal cations and metal anions was prepared. Through cross-linking amination reaction, the content of amidocyanogen of aminated chitosan adsorbent was enhanced four times than that of chitosan cross-linked adsorbent. As can be seen from the results, the adsorption ability of the novel aminated chitosan adsorbent for (Nicit) and Cr(VI) was enhanced remarkably. When the initial concentration of metallic ion was 1,000 mg/L, the adsorption capacity of the novel aminated chitosan adsorbent for nickel citrate and Cr(VI) was up to 30.2 mg/g and 28.7 mg/g, respectively. And the adsorption capacity of the novel aminated chitosan adsorbent for Ni2+ was still higher. So the new aminated chitosan adsorbent offers not only a higher uptake for metal cations but also a better adsorption capacity for metal anions.  相似文献   

20.
In this article, a novel recyclable β‐cyclodextrins (β‐CDs)‐based supramolecular adsorbent had been fabricated. With Fe3O4 magnetic nanoparticles as core, the adsorbent could be separated from water conveniently. Moreover, the hydrophobic β‐CDs caving had strong host‐guest interaction with organic compounds to form complexes. With the pH value changing, the stable complexes would disassemble to recover the adsorbent. Fourier transform infrared analysis, X‐ray diffraction measurement, transmission electron microscopy measurements, thermogravimetric analysis, and vibrating sample magnetometer analysis had been explored to confirm the structure and properties of supramolecular adsorbent. Congo red and Rhodamine B were used to characterize the adsorption capacity of adsorbent. By changing the parameters such as temperature, time, adsorbent dosage, and pH value indicated that the designed adsorbent could rapidly remove organic dyes from water with satisfactory removal effects and adsorbent recycling capacity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45084.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号