首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Visual response properties were examined in the superficial layers of the superior colliculus (SC) of anesthetized, paralyzed cats before and after i.v. administration of d-amphetamine. Receptive fields (RFs) of single SC units were plotted using small spots of light presented to the contralateral eye. Within the first hour following d-amphetamine injections, RF size gradually increased, reaching a maximum 86 min post-injection. On average, the area of the RF increased by 5.6 times and RF expansion was observed in all single units examined in the superficial layers. Over the subsequent 4-8 h following the injection, RF area gradually decreased and returned to control dimensions. Most RFs displayed asymmetrical patterns of expansion, showing relatively more horizontal than vertical growth. As RF expansion developed, responses to stimuli flashed "on" and "off" at various locations both inside and outside the borders of the control RF became progressively more vigorous. In contrast, no significant changes were noted in direction-selective responses at any time after d-amphetamine injections. Using an array of light bar stimuli of different lengths, the strength of surround suppression was found to be significantly diminished by d-amphetamine. The reduction in surround suppression was especially clear for bar lengths which exceeded the diameter of the control RF. No RF expansion was observed in the superficial layers of the SC when d-amphetamine was injected intravitreally. Furthermore, d-amphetamine had no discernable effect on the RF sizes of cells in the visual cortex. These results suggest that the RF changes in the SC were not of either retinal or cortical origin. We conclude that the mean retinal area which can potentially influence the activity of RFs in the superficial layers of the SC may be on average over 5 times greater than the RF area determined using conventional methods and criteria. These findings raise the interesting possibility that the relatively small size and sharp borders characteristic of RFs in the superficial layers arise from local inhibitory networks which delimit a broader field of excitatory activity supplied by retinal and cortical afferent terminals. Thus, in order to generate the RF changes observed here, either these local inhibitory circuits are amphetamine sensitive, or more likely, these inhibitory networks are dynamically modulated by an, as yet unidentified, amphetamine-sensitive input affecting visual RFs in the superficial layers.  相似文献   

2.
Extracellular activity was recorded from single spinal dorsal horn neurons in both chronic cat and acute rat models. This was done to define the effects of anesthesia on the processing of sensory information elicited by nonnoxious tactile stimulation of peripheral receptive fields (RFs). In the chronic cat model, baseline data were obtained in physiologically intact, awake, drug-free animals before anesthetic administration (halothane 1.0-2.0%). This made it possible to compare and contrast activity of each cell in the drug-free and anesthetized state. Halothane effects were confirmed in the acute rat model (anesthetized, spinally transected, and in some cases decerebrate). In addition, the gamma-aminobutyic acid-A (GABAA)-receptor antagonist picrotoxin (2 mg/kg) was administered intravenously to verify that the observed halothane effect on spinal dorsal horn neurons was mediated by an interaction with GABAA-receptor systems. Halothane effects on three separate measures of response to nonnoxious tactile stimuli were observed in the chronic cat model. Halothane produced a significant, dose-dependent reduction in the low-threshold RF area of the neurons studied. Halothane also caused a significant reduction in neuronal response to RF brushing (dynamic stimulus) and to maintained contact with the RF (static stimulus). A dose dependency was not observed with these latter two effects. Neurons with a predominant rapidly adapting response seemed to be less susceptible to halothane suppression than slowly adapting cells. In the acute rat model an increase in halothane caused a reduction in neuronal response similar to that seen in the cat. The intravenous administration of 2 mg/kg of picrotoxin by itself caused no significant change in RF size or response to brushing. However, the same amount of picrotoxin did cause a 50% reversal of the halothane-induced reduction in RF size without causing a significant change in the halothane effect on response to RF brushing. In contrast to work recently reported in a chronic sheep model, halothane causes a significant reduction in spinal dorsal horn neuronal response to tactile stimulation of peripheral RFs. This effect is caused by, in part, but not exclusively, to GABAA-neurotransmitter systems. However, the relative influence of GABAA systems may vary with the nature of the stimulus.  相似文献   

3.
The origin of orientation selectivity in visual cortical responses is a central problem for understanding cerebral cortical circuitry. In cats, many experiments suggest that orientation selectivity arises from the arrangement of lateral geniculate nucleus (LGN) afferents to layer 4 simple cells. However, this explanation is not sufficient to account for the contrast invariance of orientation tuning. To understand contrast invariance, we first characterize the input to cat simple cells generated by the oriented arrangement of LGN afferents. We demonstrate that it has two components: a spatial-phase-specific component (i.e., one that depends on receptive field spatial phase), which is tuned for orientation, and a phase-nonspecific component, which is untuned. Both components grow with contrast. Second, we show that a correlation-based intracortical circuit, in which connectivity between cell pairs is determined by the correlation of their LGN inputs, is sufficient to achieve well tuned, contrast-invariant orientation tuning. This circuit generates both spatially opponent, "antiphase" inhibition ("push-pull"), and spatially matched, "same-phase" excitation. The inhibition, if sufficiently strong, suppresses the untuned input component and sharpens responses to the tuned component at all contrasts. The excitation amplifies tuned responses. This circuit agrees with experimental evidence showing spatial opponency between, and similar orientation tuning of, the excitatory and inhibitory inputs received by a simple cell. Orientation tuning is primarily input driven, accounting for the observed invariance of tuning width after removal of intracortical synaptic input, as well as for the dependence of orientation tuning on stimulus spatial frequency. The model differs from previous push-pull models in requiring dominant rather than balanced inhibition and in predicting that a population of layer 4 inhibitory neurons should respond in a contrast-dependent manner to stimuli of all orientations, although their tuning width may be similar to that of excitatory neurons. The model demonstrates that fundamental response properties of cortical layer 4 can be explained by circuitry expected to develop under correlation-based rules of synaptic plasticity, and shows how such circuitry allows the cortex to distinguish stimulus intensity from stimulus form.  相似文献   

4.
A model of lamina III-IV dorsal horn cell receptive fields (RFs) has been developed to visualize the spatial patterns of cells activated by light touch stimuli. Low-threshold mechanoreceptive fields (RFs) of 551 dorsal horn neurons recorded in anesthetized cats were characterized by location of RF center in cylindrical coordinates, area, length/width ratio, and orientation of long axis. Best-fitting ellipses overlapped actual RFs by 90%. Exponentially smoothed mean and variance surfaces were estimated for these five variables, on a grid of 40 points mediolaterally by 20/segment rostrocaudally in dorsal horn segments L4-S1. The variations of model RF location, area, and length/width ratio with map location were all similar to previous observations. When elliptical RFs were simulated at the locations of the original cells, the RFs of real and simulated cells overlapped by 64%. The densities of cell representations of skin points on the hindlimb were represented as pseudocolor contour plots on dorsal view maps, and segmental representations were plotted on the standard views of the leg. Overlap of modeled and real segmental representations was at the 84% level. Simulated and observed RFs had similar relations between area and length/width ratio and location on the hindlimb: r(A) = 0.52; r(L/W) = 0.56. Although the representation of simple stimuli was orderly, and there was clearly only one somatotopic map of the skin, the representation of a single point often was not a single cluster of active neurons. When two-point stimuli were simulated, there usually was no fractionation of response zones or addition of new zones. Variation of stimulus size (area of skin contacted) produced less variation of representation size (number of cells responding) than movement of stimuli from one location to another. We conclude that stimulus features are preserved poorly in their dorsal horn spatial representation and that discrimination mechanisms that depend on detection of such features in the spatial representation would be unreliable.  相似文献   

5.
1. Cells were recorded in areas 3b and 1 of the primary somatosensory cortex (SI) of three monkeys during active arm movements. Successful reconstructions were made of 46 microelectrode penetrations, and 298 cells with tactile receptive fields (RFs) were located as to cytoarchitectonic area, lamina, or both. 2. Area 3b contained a greater proportion of cells with slowly adapting responses to tactile stimuli and fewer cells with deep modality inputs than did area 1. Area 3b also showed a greater level of movement-related modulation in tactile activity than area 1. Other cell properties were equally distributed in the two areas. 3. The distribution of cells with low-threshold tactile RFs that also responded to lateral stretch of the skin or to passive arm movements was skewed toward deeper laminae than for tactile cells that did not respond to those manipulations. 4. The variation of activity of tactile neurons during arm movements in different directions was weaker in the superficial laminae than in deeper cortical laminae. 5. Cells with only increases in activity during arm movements were preferentially but not exclusively located in middle and superficial layers. Cells with reciprocal responses were found mainly in laminae III and V, whereas cells with only decreases in activity were concentrated in lamina V. 6. Overall, active arm movements evoke directionally tuned tactile and "deep" activity in areas 3b and 1, in particular in the deeper cortical laminae that are the source of the descending output pathways from SI.  相似文献   

6.
The present studies were initiated to explore the basis for the response suppression that occurs in cat superior colliculus (SC) neurons when two spatially disparate stimuli are presented simultaneously or in close temporal proximity to one another. Of specific interest was examining the possibility that suppressive regions border the receptive fields (RFs) of unimodal and multisensory SC neurons and, when activated, degrade the neuron's responses to excitatory stimuli. Both within- and cross-modality effects were examined. An example of the former is when a response to a visual stimulus within its RF is suppressed by a second visual stimulus outside the RF. An example of the latter is when the response to a visual stimulus within the visual RF is suppressed when a stimulus from a different modality (e. g., auditory) is presented outside its (i.e., auditory) RF. Suppressive regions were found bordering visual, auditory, and somatosensory RFs. Despite significant modality-specific differences in the incidence and effectiveness of these regions, they were generally quite potent regardless of the modality. In the vast majority (85%) of cases, responses to the excitatory stimulus were degraded by >/=50% by simultaneously stimulating the suppressive region. Contrary to expectations and previous speculations, the effects of activating these suppressive regions often were quite specific. Thus powerful within-modality suppression could be demonstrated in many multisensory neurons in which cross-modality suppression could not be generated. However, the converse was not true. If an extra-RF stimulus inhibited center responses to stimuli of a different modality, it also would suppress center responses to stimuli of its own modality. Thus when cross-modality suppression was demonstrated, it was always accompanied by within-modality suppression. These observations suggest that separate mechanisms underlie within- and cross-modality suppression in the SC. Because some modality-specific tectopetal structures contain neurons with suppressive regions bordering their RFs, the within-modality suppression observed in the SC simply may reflect interactions taking place at the level of one input channel. However, the presence of modality-specific suppression at the level of one input channel would have no effect on the excitation initiated via another input channel. Given the modality-specificity of tectopetal inputs, it appears that cross-modality interactions require the convergence of two or more modality-specific inputs onto the same SC neuron and that the expression of these interactions depends on the internal circuitry of the SC. This allows a cross-modality suppressive signal to be nonspecific and to degrade any and all of the neuron's excitatory inputs.  相似文献   

7.
Extracellular unit recordings were made at various depths within SmI barrel cortex of immobilized, sedated rats, in the presence and absence of titrated amounts of the GABA(A) receptor antagonist bicuculline methiodide (BMI). Principal and adjacent whiskers were moved singly, or in paired combination in a condition-test paradigm, to assess excitatory and inhibitory receptive field (RF) characteristics. Neurons were classified as regular- or fast-spike units, and divided into three laminar groups: supragranular, granular (barrel), and infragranular. BMI increased response magnitude and duration, but did not affect response latencies. The excitatory RFs of barrel units, which are the most tightly focused on the principal whisker, were the most greatly defocused by BMI; infragranular units were least affected. All three layers had approximately equal amounts of adjacent whisker-evoked, surround inhibition, but BMI counteracted this inhibition substantially in barrel units and less so in infragranular units. The effects of BMI were most consistent in the barrel; more heterogeneity was found in the non-granular layers. These lamina-dependent effects of BMI are consistent with the idea that between-whisker inhibition is generated mostly within individual layer IV barrels as a result of the rapid engagement of strong, local inhibitory circuitry, and is subsequently embedded in layer IV's output to non-layer IV neurons. The latter's surround inhibition is thus relatively resistant to antagonism by locally applied BMI. The greater heterogeneity of non-granular units in terms of RF properties and the effects of BMI is consistent with other findings demonstrating that neighboring neurons in these layers may participate in different local circuits.  相似文献   

8.
One of the most prominent effects of Alzheimer disease is the disruption of finely tuned neuronal circuitry of discrete brain regions associated with learning and memory. Results from the present study support a role for the intrinsic inhibitory component of neuronal circuitry in determining the magnitude of beta-amyloid peptide induced cell death in the highly vulnerable pyramidal neurons of the hippocampus. Previous efforts have mostly focused on direct effects on excitatory neurons. By contrast, less emphasis has been placed on addressing a role for the intrinsic inhibitory component of cell-cell interactions of neuronal networks in response to Abeta. The present study provides evidence demonstrating that blockage of the intrinsic inhibitory component between Abeta exposed neurons leads to destabilization of calcium homeostasis and exacerbated neuronal death compared to Abeta treated cultures. Neuronal electrical activity was first silenced by exposing cultures to tetrodotoxin (TTX; 100 nM) plus Abeta, followed by survival counts. Cell death, unexpectedly, did not significantly differ from Abeta-exposed neurons. The intrinsic inhibition in Abeta-exposed cultures was then pharmacologically removed with picrotoxin (40 microM) or bicuculline (25 microM) resulting in significantly greater death than Abeta-exposed neurons alone. From these observations, it is proposed that intrinsic functional inhibition in hippocampal circuits can reduce adverse effects of Abeta on the excitatory component. By considering not just the excitatory component of electrical activity, but the intrinsic balance between excitation and inhibition, new strategies for the treatment of Alzheimer disease may emerge.  相似文献   

9.
We hypothesize: (a) peripheral innervation densities determine map scales in dorsal horn, (b) dorsal horn cell (DHC) receptive field (RF) geometries are determined by map scales, and (c) morphologies of primary afferents (PAs) and DHCs reflect their developmental history. We suggest the following sequence: (A) PAs project in a somatotopic mediolateral sequence. (B) DHCs assemble prototype RFs by sampling presynaptic neuropil with their dendrites. (C) PAs then project to all levels where their RFs are contained within prototype RFs of DHCs. (D) A competitive mechanism produces the adult form of DHC RFs. (E) Adult distributions of PA terminals and DHC dendrites reflect this developmental history. (F) Mediolateral somatotopic gradients are determined by RF densities of axons entering at the same levels. (G) Map scales at different rostrocaudal levels are determined by somatotopic gradients. (H) Geometries of DHC RFs are determined by constant convergence and divergence of monosynaptic connections. (I) Secondary processes further modify geometries of DHC RFs. (J) Residual self-organizing capacity supports maintenance and plastic mechanisms. We adduce the following evidence: (1) agreement between monosynaptically coupled inputs and cells' excitatory low threshold mechanoreceptive fields; (2) the temporal sequence of events during penetration of the gray matter by PAs; (3)variation of PA terminal and DHC dendritic domains as a function of map scale; (4) somatotopic gradients and geometries of DHC RFs in adult dorsal horn; (5) calculations of peripheral innervation densities and dorsal horn map scales; and (6) constant divergence and convergence between PAs and DHCs.  相似文献   

10.
In contrast to the mature brain, in which GABA is the major inhibitory neurotransmitter, in the developing brain GABA can be excitatory, leading to depolarization, increased cytoplasmic calcium, and action potentials. We find in developing hypothalamic neurons that glutamate can inhibit the excitatory actions of GABA, as revealed with fura-2 digital imaging and whole-cell recording in cultures and brain slices. Several mechanisms for the inhibitory role of glutamate were identified. Glutamate reduced the amplitude of the cytoplasmic calcium rise evoked by GABA, in part by activation of group II metabotropic glutamate receptors (mGluRs). Presynaptically, activation of the group III mGluRs caused a striking inhibition of GABA release in early stages of synapse formation. Similar inhibitory actions of the group III mGluR agonist L-AP4 on depolarizing GABA activity were found in developing hypothalamic, cortical, and spinal cord neurons in vitro, suggesting this may be a widespread mechanism of inhibition in neurons throughout the developing brain. Antagonists of group III mGluRs increased GABA activity, suggesting an ongoing spontaneous glutamate-mediated inhibition of excitatory GABA actions in developing neurons. Northern blots revealed that many mGluRs were expressed early in brain development, including times of synaptogenesis. Together these data suggest that in developing neurons glutamate can inhibit the excitatory actions of GABA at both presynaptic and postsynaptic sites, and this may be one set of mechanisms whereby the actions of two excitatory transmitters, GABA and glutamate, do not lead to runaway excitation in the developing brain. In addition to its independent excitatory role that has been the subject of much attention, our data suggest that glutamate may also play an inhibitory role in modulating the calcium-elevating actions of GABA that may affect neuronal migration, synapse formation, neurite outgrowth, and growth cone guidance during early brain development.  相似文献   

11.
Effects of carotid body chemoreceptor stimulation by 5-hydroxytryptamine (5-HT) on the phrenic nerve activity and ventilation were studied by injecting it into the external carotid artery of the rabbits. 5-HT induced an immediate and transient increase of ventilatory rate which became more pronounced with increasing the dose, but it was accompanied by decreases in integrated phrenic nerve activity and tidal volume. The excitatory response was followed by an inhibition in 35% of the experiments. The 5-HT-induced excitation was unaffected by pretreatment with atropine and mecamylamine, but it was completely blocked by tetrodotoxin (TTX) which failed to inhibit the excitation induced by NaCN. Prior administration of atropine abolished the inhibitory effect of 5-HT and the ventilatory excitation induced by baroreceptor stimulation. It may be suggested that the excitation induced by 5-HT results from stimulation of chemoreceptor nerve endings, whereas the inhibition is probably due to its action on baroreceptor nerve endings.  相似文献   

12.
The extracellular responses of neurones in the neostriatum following single pulse stimulation of the substantia nigra were investigated in urethane anaesthetized rats. Low intensity stimulation (less than 10 V) evoked single large amplitude spikes while higher intensities (10-20 V) elicit a high frequency burst of small amplitude spikes or waves. When spontaneous or glutamate-induced large spikes are recorded, nigral stimulation causes their inhibition coincidentally with the development of a burst. If the burst is prevented, the inhibitory response disappears. Both the nigral evoked inhibition and burst response are unaffected by iontophoretically or systemically administered antonists of dopamine or by chemical lesions of the dopamine-containing nigral neurones. The monosynaptic activation of large amplitude striatal neurones, which could also be identified antidromically by stimulation of the globus pallidus, was reversibly blocked by dopamine antagonists. It is concluded (a) that the burst responses are induced through the antidromic excitation of striatonigral axons within the striatum; (b) that the striatal neurones thus activated are inhibitory interneurones and (c) that the dopamine-containing neurones of the nigra make excitatory synaptic contact with a population of striatal output cells, some of which at least project to the globus pallidus.  相似文献   

13.
(1) The inhibition of spontaneous action potentials in guinea pig cerebellar cortex slices by GABA, glycine, taurine and beta-alanine is maintained when C1- in the superfusion medium is almost completely replaced by NO3- or I-('permeant' anion), but the inhibition decreases in magnitude with repeated application of the amino acid. Replacement of C1- by sulfate or isethionate ('impermeant' anion) causes a conversion of inhibition by these amino acids to excitation. The initial excitation which is sometimes seen with these inhibitory amino acids in high C1- media is abolished when C1- is replaced by either permeant or impermeant anions. (2) Reduction of K+ in the medium causes an increase of inhibition by the inhibitory amino acids in the presence of high C1- and reduction of excitation when C1- is replaced by impermeant anion. (3) Excitation by GABA in impermeant anion (low C1-) media is unaffected by reduction of Na+ in the media by 50% but excitations by glycine, taurine, beta-alanine and L-glutamate are greatly reduced. (4). Excitation by GABA in impermeant anion (low C1-) media is abolished by picrotoxin and bicuculline which both suppress inhibition by GABA in a high C1- medium. Strychnine suppresses the effects of glycine, taurine and beta-alanine in either a low or high C1- medium. Bicuculline blocks the inhibitory effect of these three amino acids in a high C1- medium but does not affect their excitatory effects in a low C1- medium. (5) These results are consistent with the hypothesis that the inhibitory amino acids, GABA, glycine, taurine and beta-alanine, cause inhibition via increase of C1- (and perhaps K+) permeability and that glycine, taurine and beta-alanine also interact with strychnine-sensitive receptors mediating (perhaps indirectly) increased permeability to Na+ and, therefore, excitation in low C1- media.  相似文献   

14.
Two experiments using a conditioned suppression procedure with 64 Sprague-Dawley rats found that postconditioning reinforcement of an inhibitory feature stimulus (X) had substantially different effects depending on whether a serial or a simultaneous feature negative discrimination procedure was used to establish the inhibition. With the simultaneous procedure, acquisition of excitation to the previously inhibitory X was retarded when X was paired with shock. Subsequent summation tests showed no evidence of inhibition to X after reinforced X presentations. However, acquisition of excitation to X was unaffected by prior serial feature negative training, and X-shock pairings had relatively little effect on X's inhibitory power in summation tests. Data suggest that the nature of inhibition established in feature negative discriminations differs substantially depending on the temporal arrangement of stimuli. One possibility is that inhibitors established using simultaneous stimulus arrangements modulate behavior by acting on a representation of the UCS, but inhibitors established with serial procedures act on particular CS–UCS associations. (24 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
A model originally proposed by Akazawa and Kato (1990) for the spinal cord was adopted as prototypical of a neuronal pool with strong excitatory drive and strong recurrent inhibition. Our simulations of the model have shown that a strong synchronization occurs between the spike trains in the neuronal pool. This happens because the proposed model has a single and strong excitatory drive on the neuronal pool. However, usually a multitude of other randomly occurring synaptic inputs impinge on the neuronal pool and therefore a new investigation was carried out to study the effects of synaptic noise on the network behavior. The synaptic noise decreased the degree of synchronization of the neuronal spike trains but on the other hand caused an unexpected decrease in the mean firing rate of the neuronal pool. A detailed analysis indicated that this phenomenon is due to a combination of two mechanisms: a saturation of the feedback inhibition and a decrease of the synchronization in the neuronal pool with synaptic noise. The synaptic noise caused a more frequent activation of the saturated recurrent inhibitory feedback loop along time, thereby increasing the inhibitory effect on the neuronal pool.  相似文献   

16.
The effects of nitrous oxide (75%) on the spinal dorsal born wide dynamic range (WDR) neuronal activity were studied in either spinal cord intact or spinal cord-transected cats. Extracellular activity was recorded in the dorsal horn from single WDR neurons responding to noxious and non-noxious stimuli applied to the cutaneous receptive fields on the left bind foot pads of intact or decerebrate, spinal cord-transected (L 1-2) cats. The experiment was divided into four sections as follows: (1) When 10 micrograms of bradykinin (BK) was injected into the femoral artery ipsilateral to the recording site as the noxious test stimulus in the spinal cord-transected cat, all of 6 WDR neurons gave excitatory responses which were not depressed by 75% nitrous oxide. (2) When the injection of 10 micrograms of BK into the femoral artery ipsilateral to the recording site was used in the spinal cord-intact cat, 6 of 15 WDR neurons (40%) gave excitatory responses, which were significantly depressed by 75% nitrous oxide, and 9 of 15 WDR neurons (60%) gave inhibitory responses, which were not affected by 75% nitrous oxide. (3) When 10 micrograms of bradykinin (BK) was injected into the femoral artery contralateral to the recording site as the noxious test stimulus in the spinal cord transected cat, 6 of 12 WDR neurons gave excitatory reasons, which were not depressed by 75% nitrous oxide. (4) When the injection of 10 micrograms of BK into the femoral artery contralateral to the recording site was used in the spinal cord-intact cat, 6 of 6 WDR neurons (100%) gave responses, which were affected by 75% nitrous oxide. We have observed that nitrous oxide reduces the excitation and inhibition of dorsal born WDR neuronal activities induced by BK injection in spinal cord-intact cats, but does not reduce the excitation of those in spinal cord-transected cats. This finding confirmed that the antinociceptive effect of nitrous oxide might be modulated by supraspinal descending inhibitory control systems. In addition our result showed that the supraspinal effect of nitrous oxide was mediated not only by an increase but also a decrease in a supraspinal descending inhibition.  相似文献   

17.
Combined optical imaging of ferret primary visual cortex in vivo and scanning laser photostimulation in brain slices were used to determine the spatial relationships between synaptic inputs onto individual neurons and the pattern of orientation columns. In the upper cortical layers, both excitatory and inhibitory inputs originated primarily from regions with orientation tuning similar to that of the recorded neurons; the shapes of the input tuning curves were indistinguishable. The orientation distributions of both types of inputs centered around the orientation of the recorded neurons, and no evidence for preferential cross-orientation inputs, either excitatory or inhibitory, was observed. These patterns of synaptic connectivity are most consistent with feedforward models for generation of orientation selectivity and are inconsistent with the patterns required by models based on cross-orientation inhibition.  相似文献   

18.
This study tested the hypothesis that the receptive fields (RFs) of neurons in the adult sensory cortex are shaped by the recent history of sensory experience. Sensory experience was altered by a brief period of "whisker pairing": whiskers D2 and either D1 or D3 were left intact, while all other whiskers on the right side of the face were trimmed close to the fur. The animals were anesthetized 64-66 h later and the responses of single neurons in contralateral cortical barrel D2 to stimulation of whisker D2 (the center RF) and the four neighboring whiskers (D1, D3, C2, and E2; the excitatory surround RF) were measured. Data from 79 cells in four rats with whiskers paired were compared to data from 52 cells in four rats with untrimmed whiskers (control cases). During the period of whisker pairing, the RFs of cells in barrel D2 changed in three ways: (i) the response to the center RF, whisker D2, increased by 39%, (ii) the response to the paired surround RF whisker increased by 85-100%, and (iii) the response to all clipped (unpaired) surround RF whiskers decreased by 9-42%. In the control condition, the response of barrel D2 cells to the two neighboring whiskers, D1 and D3, was equal. After whisker pairing, the response to the paired neighbor of D2 was more than twice as large as the response to the cut neighbor of D2. These findings indicate that a brief change in the pattern of sensory activity can alter the configuration of cortical RFs, even in adult animals.  相似文献   

19.
Fear conditioning modifies the processing of frequency information; receptive fields (RFs) in the auditory cortex and the medial geniculate body (MGB) are altered to favor processing the frequency of the conditioned stimulus/stimuli (CS) over the pretraining best frequency (BF) and other frequencies. This experiment was designed to determine whether brief conditioning in the waking state produces RF plasticity that is expressed under general anesthesia. Guinea pigs bearing electrodes in the MGB received 20 trials on tone-shock pairing in a single training session. RFs were determined with animals under ketamine anesthesia before conditioning and 1–3 hrs and 24 hrs after conditioning. Frequency-specific RF plasticity was evident for both postconditioning periods: The BF shifted toward or to the CS frequency, responses to the BF decreased, and responses to the CS increased. Broadly tuned cells developed greater RF plasticity than narrowly tuned neurons. Results demonstrate that the specific neuronal results of brief learning experiences can be expressed in the anesthetized brain. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
In two conditioned suppression experiments with rats as subjects, the authors examined two classes of accounts of spontaneous recovery of excitation and inhibition. One view suggests that spontaneous recovery occurs due to greater temporal instability of inhibitory associations, whereas the other posits that spontaneous recovery occurs due to greater temporal instability of second-learned associations. These accounts diverge in predictions concerning spontaneous recovery when the first-learned association is inhibitory and the second-learned association is excitatory. Using different designs, Experiments 1 and 2 found spontaneous recovery of both excitation and inhibition. The results support the view that spontaneous recovery occurs due to faster waning of second-learned associations. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号