首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Nitrogen doped amorphous carbon (a-C:N) thin film electrodes with a range of film structures have been deposited using a filtered cathodic vacuum arc system. The correlation between film structure and electro-reduction of molecular oxygen in aqueous media at the electrodes has been explored. In aqueous 0.1 M NaOH, dioxygen reduction is inhibited at all the a-C:N electrodes compared with that at glassy carbon electrodes. The potential of the dioxygen reduction current peak shifts negatively at a-C:N electrodes as the sp3 C fraction in the a-C:N materials increases, while the current peak height decreases simultaneously. The a-C:N electrodes possess high sensitivity for investigating the mechanism of dioxygen reduction. It was found that the catalytic H2O2 reduction to H2O on carbon materials is attributed to oxygen species at sp2 C sites.  相似文献   

2.
A correlation between film structures and the width of the potential windows defined by the dihydrogen and dioxygen evolutions in aqueous media at nitrogen-doped amorphous carbon thin film electrodes prepared using a filtered cathodic vacuum arc system is reported. A range of film structures were obtained by changing the nitrogen mass flow rate during deposition, and the film structures were determined using electron energy-loss spectroscopy. For the film electrodes, the width of the potential windows in 0.1 M NaOH and in 0.1 M H2SO4 at a current density of 100 μA/cm2 exceed those for glassy carbon electrodes, and increase with an increase in the sp3 C fraction in the a-C:N materials. A film electrode with a rich sp2 C content, has a lower electrical resistance, but still possesses a relatively large potential window. These features combined allow the materials to be tailored for particular electroanalysis.  相似文献   

3.
Nitrogen-doped hydrogenated amorphous carbon thin films (a-C:N:H, N-doped DLC) were synthesized with microwave-assisted plasma-enhanced chemical vapor deposition widely used for DLC coating such as the inner surface of PET bottles. The electrochemical properties of N-doped DLC surfaces that can be useful in the application as an electrochemical sensor were investigated. N-doped DLC was easily fabricated using the vapor of nitrogen contained hydrocarbon as carbon and nitrogen source. A N/C ratio of resulting N-doped DLC films was 0.08 and atomic ratio of sp3/sp2-bonded carbons was 25/75. The electrical resistivity and optical gap were 0.695 Ω cm and 0.38 eV, respectively. N-doped DLC thin film was found to be an ideal polarizable electrode material with physical stability and chemical inertness. The film has a wide working potential range over 3 V, low double-layer capacitance, and high resistance to electrochemically induced corrosion in strong acid media, which were the same level as those for boron-doped diamond (BDD). The charge transfer rates for the inorganic redox species, Fe2+/3+ and Fe(CN)64−/3− at N-doped DLC were sufficiently high. The redox reaction of Ce2+/3+ with standard potential higher than H2O/O2 were observed due to the wider potential window. At N-doped DLC, the change of the kinetics of Fe(CN)63−/4− by surface oxidation is different from that at BDD. The rate of Fe(CN)63−/4− was not varied before and after oxidative treatment on N-doped DLC includes sp2 carbons, which indicates high durability of the electrochemical activity against surface oxidation.  相似文献   

4.
Amorphous hydrogenated carbon nitride [a-C:H(N)] films were deposited from the mixture of C2H2 and N2 using the radio frequency plasma enhanced chemical vapor deposition technique. The films were characterized by X-ray photon spectroscopy, infrared, and positron annihilation spectroscopy. The internal stress was measured by substrate bending method. Up to 9.09 at% N was incorporated in the films as the N2 content in the feed gas was increased from 0 to 75%. N atoms are chemically bonded to C as C–N, CN and CN bond. Positron annihilation spectra shows that density of voids increases with the incorporation of nitrogen in the films. With rising nitrogen content the internal stress in the a-C:H(N) films decrease monotonically, and the rate of decrease in internal stress increase rapidly. The reduction of the average coordination number and the relax of films structure due to the decrease of H content and sp3/sp2 ratio in the films, the incorporation of nitrogen atoms, and the increases of void density in a-C:H(N) films are the main factors that induce the reduction of internal stress.  相似文献   

5.
We review the implementation of X-ray reflection (reflectivity and scattering) techniques for the study of amorphous Carbon (a-C, a-C:H, ta-C) thin and multilayer films and in particular in the determination of the film density and surface and interface morphology, which are intrinsically significant for ultra-thin films. We present studies of various a-C and a-C:H films, which include in particular: i) the morphology of a-C/Si interface, ii) the surface morphology and density evolution during sputter growth of a-C, iii) the morphology of the sp2-rich a-C/sp3-rich a-C interfaces in multilayer a-C films, iv) the universal correlation between the film density and the refractive index of a-C and a-C:H films. We also compare and validate the experimental results with relative results from Monte-Carlo simulations within an empirical potential scheme. The computational results shed light on the atomistic mechanisms determining the structure and morphology of the a-C interfaces between individual sp2- and sp3-rich a-C layers and between a-C and Si substrates.  相似文献   

6.
Amorphous carbon (a-C) films with various thicknesses depending on the reaction time are deposited on the surface of Ti1.4V0.6Ni alloy electrodes for Ni-MH (nickel-metal hydride) battery by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). With the increasing deposition time, the Raman spectra show a gradually disordered sp2-bonding change of the films and the changing trend of sp2/sp3 is obtained by X-ray photoelectron spectroscopy. The a-C film of depositing for 30 min with the thickness of 400 nm shows a favorable stability in alkaline electrolyte, the capacity is enhanced by 36.2% after 50 cycles than the bare electrode, and the charge voltage is 80 mV lower than the bare one. The a-C film with high sp2-bonded carbon content effectively reduces the charge transfer resistance, and as a coating layer, the dissolution of V of the alloy is also inhibited. In particular, to get a proper discharge voltage and a stable capacity simultaneously, covering completely and an appropriate thickness of the a-C film are crucial for an expected performance.  相似文献   

7.
Nitrogen-doped ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite films, which possess n-type conduction with enhanced electrical conductivities, were prepared by pulsed laser deposition and they were structurally studied by Fourier transform infrared (FTIR) spectroscopy. The film with a nitrogen content of 7.9 at.% possessed n-type condition with an electrical conductivity of 18 S/cm at 300 K. The FTIR spectra revealed peaks due to nitrogen impurities, C = N, C-N, and CHn (n = 1, 2, 3) bands. The sp2-CHn/(sp2-CHn + sp3-CHn), estimated from the area-integration of decomposed peaks, were 24.5 and 19.4% for undoped and 7.9 at.% doped films, respectively. The nitrogen-doping not only form the chemical bonds between carbon and nitrogen atoms such as C = N and C-N bonds but also facilitate the formation of both sp2 and sp3 bonds, in particular, the sp3-CHn bond is preferentially formed. From the analysis of the FTIR spectra, it was found that the hydrogen content in the film is increased with an increase in the nitrogen content. The increased hydrogen content might be owing to the enhanced volume of grain boundaries (GBs) between UNCD grains, and those between UNCD grains and an a-C:H matrix, which is caused by a reduction in the UNCD grain size. The CHn peaks predominantly come from an a-C:H matrix and GBs. Since the nitrogen-doping for a-C:H has been known to be hardly effective, the n-type conduction with the enhanced electrical conductivities might be attributed to the sp2-CHn formation at the GBs.  相似文献   

8.
Amorphous carbon films have several outstanding tribology characteristics, including high hardness, surface smoothness, and low friction. Under tribological conditions, their surface is generally exposed to high-temperature and pressure. Although the structure of amorphous carbon films is likely changed by high temperature and pressure, there have been no reports on such structural changes of the films. To obtain information about their structural changes, synchrotron X-ray diffraction was used to analyze two kinds of amorphous carbon films, a-C:H and a-C:H:Si, under high-temperature and high-hydrostatic pressure conditions. Synchrotron X-ray diffraction was applied to films pressurized by a multi-anvil press installed in the PF-AR NE5C beamline at KEK at room temperature and at a high-temperature around 200 °C. The pair distribution functions derived by Fourier transformation of the obtained scattering intensity profiles showed that the sp2/sp3 ratios for both films decreased as the pressure increased and that the sp2/sp3 ratio for the a-C:H film increased as the temperature increased. This indicates that high-pressure creates sp3 stabilization in a-C:H and a-C:H:Si films while high-temperature creates sp2 transition in a-C:H film. The sp2/sp3 ratio for the a-C:H:Si film did not change much even at high-temperature due to the high thermal-oxidative stability of a-C:H:Si.  相似文献   

9.
Nitrogen-doped ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) films were deposited by pulsed laser deposition (PLD). Nitrogen contents in the films were controlled by varying a ratio in the inflow amount between nitrogen and hydrogen gases. The film doped with a nitrogen content of 7.9 at.% possessed n-type conduction with an electrical conductivity of 18 Ω? 1 cm? 1 at 300 K. X-ray photoemission spectra, which were measured using synchrotron radiation, were decomposed into four component spectra due to sp2, sp3 hybridized carbons, C=N and C–N. A full-width at half-maximum of the sp3 peak was 0.91 eV. This small value is specific to UNCD/a-C:H films. The sp2/(sp3 + sp2) value was enhanced from 32 to 40% with an increase in the nitrogen content from 0 to 7.9 at.%. This increment probably originates from the nitrogen incorporation into an a-C:H matrix and grain boundaries of UNCD crystallites. Since an electrical conductivity of a-C:H does not dramatically enhance for this doping amount according to previous reports, we believe that the electrical conductivity enhancement is predominantly due to the nitrogen incorporation into grain boundaries.  相似文献   

10.
Hydrogenated amorphous carbon (a-C:H) films deposited from CH4 in a dual electron cyclotron resonance (ECR)–r.f. plasma were treated in N2 plasma at different r.f. substrate bias voltages after deposition. The etching process of a-C:H films in N2 plasma was observed by in situ kinetic ellipsometry, mass spectroscopy (MS), and optical emission spectroscopy (OES). Ex situ atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the etched film surface. XPS analysis proves that the nitrogen treatment on the a-C:H film, induced by r.f. substrate bias, causes a direct nitrogen incorporation in the film surface up to 15–17 at.% to a depth of about 20–40 Å depending on the r.f. bias. Various bonding states between carbon and nitrogen, such as tetrahedral sp3 C–N, and trigonal sp2 C–N were confirmed by the deconvolution analysis of C 1s and N 1s core level spectra. The evolution of etching rate and the surface roughness in the film measured by AFM exhibit a clear dependence on the applied r.f. bias. MS and OES show the various neutral species in the N2 plasma such as HCN, CN, and C2N2, which may be considered as the chemical etching products during the N2 plasma treatment of a-C:H film.  相似文献   

11.
Calcium nitrate Ca(NO3)2 aqueous solution was found to be an effective aqueous electrolyte for a supercapacitor using ordered mesoporous carbon as the electrode materials. The supercapacitive behavior of ordered mesoporous carbon CMK-3 electrode in Ca(NO3)2 aqueous electrolyte was investigated utilizing cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge measurements. CMK-3 electrode shows excellent supercapacitive behavior with wide voltage window, high specific gravimetric capacitance and satisfactory electrochemical stability in Ca(NO3)2 aqueous electrolyte. The specific gravimetric capacitance of CMK-3 electrode in Ca(NO3)2 aqueous electrolyte reaches 210 F g?1 at a current density of 1 A g?1, which is higher than that in conventional aqueous electrolytes NaNO3 and KOH solution about 40% and 54%, respectively. The high charge density of the electric double layer formed at the interface of the CMK-3 electrode and Ca(NO3)2 aqueous electrolyte and the pseudo-capacitive effect originating from the oxygen groups on the surface of CMK-3 were believed to respond for the excellent supercapacitive behavior of CMK-3 electrode in Ca(NO3)2 aqueous electrolyte.  相似文献   

12.
Suitable electrode materials play a decisive role in the performance of supercapacitors. In recent years, transition metal nitrides come into view because of their advantages of superior electrical conductivity exceeding the corresponding metal oxides and higher specific capacitance compared with carbon-based materials. Herein, we have successfully synthesized the binder-free Co3N thin films for high-efficiency supercapacitor by reactive magnetron sputtering. Remarkedly, the Co3N thin film electrodes can reach a high specific capacity of 47.5 mC cm?2 at a current density of 1.0 mA cm?2 along with reasonable cycling stability (78.1% remaining after 10,000 cycles). These findings have proved that the Co3N thin films have great potential applications for supercapacitors or other electrochemical energy storage devices.  相似文献   

13.
《Ceramics International》2022,48(15):21451-21458
During the deposition of a-C:H film, defects (pinholes or discontinuities) caused by excessive stress will inevitably appear, which will reduce the corrosion resistance of the a-C:H film. In this study, top a-C:H:Si:O layers (thickness of approximately 0.3 μm) on the surface of a-C:H films were deposited on a large scale by PACVD technology using acetylene (C2H2) and/or hexamethyldisiloxane (HMDSO) as reactants, to improve the corrosion resistance of a-C:H films while ensuring the appropriate overall hardness of the films. The corrosion behaviors of the films were studied by electrochemical impedance spectroscopy (EIS) and Tafel polarization. We found that the a-C:H/a-C:H:Si:O films possess a lower electrolyte penetration rate due to their stronger capacitance characteristics. In addition, the corrosion current density of the a-C:H/a-C:H:Si:O films (10?10 A cm?2) were reduced by 2 orders of magnitude compared to the a-C:H film (10?8 A cm?2), and by 3 orders of magnitude compared to 316 stainless steel (10?7 A cm?2). The impedance results obtained by EIS were simulated using appropriate equivalent circuits, and the corresponding electrical parameters were used to further verify the electrochemical protection behavior of the top a-C:H:Si:O layer.  相似文献   

14.
Carbon-based thin films are ideal materials for several state-of-the-art applications, such as protective materials and as active films for organic electronics, medical, optoelectronic devices. In this work, we study in detail the effect of the ion-bombardment and the hydrogen partial pressure during deposition on the optical properties of hydrogenated amorphous carbon (a-C:H) thin films grown onto c-Si substrates by rf magnetron sputtering. The optical properties of the a-C:H films were investigated by phase modulated Spectroscopic Ellipsometry in a wide spectral region from the NIR to the Vis-far UV (0.7-6.5 eV). A dispersion model based on two Tauc-Lorentz oscillators, has been applied for the analysis of the measured < ε(ω)> of the a-C:H films to describe the π-π* and σ-σ* interband electronic transitions, that can describe accurately the optical properties of all amorphous carbons. The applied Vb influences the bombardment of the growing thin films with Ar ions affecting the content of sp2 and sp3 hybridized carbon bonds in the films. As it was found, the increase of the applied negative voltage reduces the optical transparency of the a-C:H films. Also, the H incorporation has been found to change only the energy position of the σ-σ* transitions. Finally, from the study of the refractive index n(ω = 0 eV) it has been found that the increase of the ion bombardment during the films deposition is correlated to an increase in the films density.  相似文献   

15.
Hydrogenated amorphous carbon (a-C:H) films prepared by plasma decomposition of hydrocarbons exhibit a wide variety of electronic and mechanical properties depending on their deposition conditions, which makes them very interesting for applications in several domains. This versatility is essentially due to the presence of both sp2- and sp3-hybridized carbon atoms in variable proportions, and to the tendency of the sp2 C atoms to gather into π-bonded clusters with different bonding configurations. The relationships between the film microstructure and their electronic density of states, as deduced from a detailed analysis of their optical properties over a large spectral range, are described and discussed, taking as reference materials the purely sp2 (graphite) and purely sp3 (diamond) carbon crystalline phases, as well as the prototype hydrogenated amorphous tetra-coordinated semiconductor, hydrogenated amorphous silicon. It is shown that the type of clustering of the sp2 C atoms is certainly more determinant for the electronic density of states, and especially for the optical gap value, than the proportion of these atoms in the material.  相似文献   

16.
A new type of hydrogenated amorphous carbon (a-C:H) film is prepared under low bias voltage and an extended range of plasma density in a radio-frequency plasma enhanced chemical vapor deposition system (RF-PECVD). The obtained a-C:H samples are grown on electrically floating substrates instead of substrates mounted on the powered or the grounded electrode of RF-PECVD, and have structure and properties that are significantly different from regular a-C:H films. The samples have an optical gap ranging from 1 to 4 eV, while maintaining low intrinsic stress between 0.1 and 0.2 GPa. Fractions of all types of CHx carbon–hydrogen groups of the obtained samples are measured, analyzed, and used to locate these samples in the carbon-hydrogen ternary phase diagram. The obtained samples are located in the same general area as the regular a-C:H films, indicating configurational rather than compositional structural differences. The hydrogenation ratio of sp3 carbons in the obtained samples is found to remain at a very high level, and is used to explain their unique properties.  相似文献   

17.
The relationships between the deposition conditions, the growth mechanisms, the microstructure and the electronic density of states of hydrogenated amorphous carbon (a-C:H) films prepared by PECVD from hydrocarbons are not yet fully understood. We therefore performed a systematic study using several complementary techniques to determine the changes in the microstructure and in the optical properties of a-C:H samples deposited from a dual micro-wave/radio-frequency discharge in methane as a function of the negative r.f. bias voltage applied to the substrate −Vb. The results reveal the existence of two successive film growth regimes when varying −Vb from −30 to −600 V, i.e. when increasing the ion bombardment during deposition, which lead to different types of sp2 C atoms clustering and H incorporation, but to the same density of paramagnetic defects. Models of the a-C:H microstructure are proposed in each case, and their influence on the electronic states density is analysed in detail. It is shown that the H content and the proportion of sp2 C atoms play a minor role on the electronic properties, as compared to the nature, the size, the number and probably the distortions of the π-bonded clusters.  相似文献   

18.
X.B. Yan  T. Xu  G. Chen  H.W. Liu  S.R. Yang 《Carbon》2004,42(15):3103-3108
Hydrogenated amorphous carbon (a-C:H) films were deposited on Si substrates by electrolysis in a methanol solution at ambient pressure and a low temperature (50 °C), using various deposition voltages. The influence of deposition voltage on the microstructure of the resulting films was analyzed by visible Raman spectroscopy at 514.5 nm and X-ray photoelectron spectroscopy (XPS). The contents of sp3 bonded carbon in the various films were obtained by the curve fitting technique to the C1s peak in the XPS spectra. The hardness and Young’s modulus of the a-C:H films were determined using a nanoindenter. The Raman characteristics suggest an increase of the ratio of sp3/sp2 bonded carbon with increasing deposition voltage. The percentage of sp3-bonded carbon is determined as 33–55% obtained from XPS. Corresponding to the increase of sp3/sp2, the hardness and Young’s modulus of the films both increase as the deposition voltage increases from 800 V to 1600 V.  相似文献   

19.
Amorphous carbon (a-C) films with high contents of tetrahedral carbon bonding (sp3) were synthesized on smooth Si(100) surfaces by cathodic arc deposition. Before diamond growth, the a-C films were pretreated with a low-temperature methane-rich hydrogen plasma in a microwave plasma-enhanced chemical vapor deposition system. The evolution of the morphology and microstructure of the a-C films during the pretreatment and subsequent diamond nucleation and initial growth stages was investigated by high-resolution transmission electron microscopy (TEM). Carbon-rich clusters with a density of ∼1010 cm−2 were found on pretreated a-C film surfaces. The clusters comprised an a-C phase rich in sp3 carbon bonds with a high density of randomly oriented nanocrystallites and exhibited a high etching resistance to hydrogen plasma. Selected area diffraction patterns and associated dark-field TEM images of the residual clusters revealed diamond fingerprints in the nanocrystallites, which played the role of diamond nucleation sites. The presence of non-diamond fingerprints indicated the formation of Si–C-rich species at C/Si interfaces. The predominantly spherulitic growth of the clusters without apparent changes in density yielded numerous high surface free energy diamond nucleation sites. The rapid evolution of crystallographic facets in the clusters observed under diamond growth conditions suggested that the enhancement of diamond nucleation and growth resulted from the existing nanocrystallites and the crystallization of the a-C phase caused by the stabilization of sp3 carbon bonds by atomic hydrogen. The significant increase of the diamond nucleation density and growth is interpreted in terms of a simple three-step process which is in accord with the experimental observations.  相似文献   

20.
The problems and possible solutions associated with producing practical electronic devices based upon amorphous carbon (a-C) thin films are discussed. The clustering of the carbon sp2 phase is shown to be a critical aspect in understanding the current device limitations. In order to exploit the sp2 clustering we show that the use of ion beams to deposit energy into the microstructure in a controlled manner, as opposed to conventional thermal anneal treatments, results in a delocalised electron wavefunction and an enhancement of conductivity. A barrier controlled device is demonstrated by carefully choosing the ion energy and dose. One of the consequences of ion implantation is that film can now be considered as consisting of conductive sp2 C clusters within an insulating sp3 C matrix. We show that the presence of this dielectric inhomogeneity between the conductive sp2 regions and the sp3 matrix plays an important role in understanding the field emission behaviour from a-C based materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号